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Abstract

A central notion for allocation problems when there are private endowments is core: no coalition

should be able to block the allocation. However, for an exchange economy of discrete resources,

core can be empty. An alternative core-type stability axiom is the bargaining set via Aumann and

Maschler (1964): a blocking by a coalition is justified only if there is no counter-objection to it and

an allocation is in the bargaining set if there does not exist a justified blocking. We prove that the

bargaining set characterizes a well-known class of trading mechanisms, the top trading cycles.
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1 Introduction

An exchange economy of discrete resources with private endowments is when each agent owns an

indivisible good and these goods are to be allocated among agents without monetary transfers via

direct mechanisms. The central notion when there are private endowments is individual rationality

which requires that the assignment should be such that no agent is worse off than her endowment.

There is another trademark property of this problem, core: no coalition of agents should be able to

block the assignment; that is, they should not prefer reallocating their endowments among themselves

(by leaving the economy) over the assignment. However, core is in general empty. An alternative (and

weaker) notion is the bargaining set by Aumann and Maschler (1964): a blocking is justified only if

there is no counter-objection to it and an allocation is in the bargaining set if there does not exist a

justified blocking. We prove that, in the context of exchange economies of discrete resources, the well

known Top Trading Cycles class is characterized by the bargaining set.

If preferences are strict, core is a singleton and it is the only solution which satisfies individual ra-

tionality, Pareto efficiency and strategy-proofness (Ma (1994), Sönmez (1999)). Also, core is equivalent

to the outcome of the Gale’s well-known Top Trading Cycles (TTC) algorithm (Shapley and Scarf,

1974). The TTC algorithm works as follows: Each agent points at her most preferred available object

(all objects are available at the beginning) and each object points at its owner. Since all agents and ob-

jects point, there is at least one cycle where each agent owns the most preferred object of the previous

agent in the cycle. The algorithm assigns to each agent in the cycle her most preferred available object

(that is, the object she points at) and removes her with her assigned object. This continues until no

one is left. The resulting mechanism is group strategy-proof and Pareto efficient (Roth, 1982). When

an agent may be endowed with multiple objects or no object, the top trading cycles rule is generalized

to the hierarchical change rule, which is characterized by Pareto efficiency, group strategy-proofness

and reallocation-proofness (Pápai, 2000). A more general trading mechanism is trading-cycles and it

is characterized by group strategy-proofness and Pareto efficiency (Pycia and Ünver, 2016).

While the extension of the TTC algorithm to the weak preferences domain is not trivial, such

extensions satisfying individual rationality, Pareto efficiency and strategy-proofness are shown to exist

(Jaramillo and Manjunath (2012), Alcalde-Unzu and Molis (2011), Saban and Sethuraman (2013)).

Strategy-proofness characterizes a subclass of these generalized TTC class satisfying Pareto efficiency
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(Saban and Sethuraman, 2013).

When the restrictive strict preferences assumption is removed, core can be empty (Shapley and

Scarf, 1974). Actually, core is non-empty only for a very special preference and endowment structure

(Quint and Wako, 2004). A weakening of core is weak core: blocking is allowed only if each agent in

the blocking coalition is strictly better off than the assignment. The extensions of the TTC discussed

in the previous paragraph are in the weak core. Our focus is on another notion, the bargaining set,

which incorporates an important consideration into the process of blocking an assignment: when

blocking, coalitions should consider possible counter-blockings of other coalitions. More precisely, an

assignment is in the bargaining set if blocking by a coalition implies that there is another coalition

blocking the assignment resulting from the initial blocking (Definition 1). This notion is formulated

by Aumann and Maschler (1964) and later analysed for different economies. In the context of a

market game with a continuum of players, the bargaining set is equivalent to the set of Walrasian

allocations (Mas-Colell, 1989). For non-transferable utility games, the bargaining set is non-empty

under certain conditions (Vohra, 1991).1 For an exchange economy with differential information and

a continuum of traders, the bargaining set and the set of Radner competitive equilibrium allocations

are equivalent (Einy, Moreno, and Shitovitz, 2001). While the bargaining set takes into account only

one step of counter-objection to a blocking coalition, the consideration of a chain of counter-objections

implies a more refined axiom (Dutt, Ray, Sengupta, and Vohra, 1989).

The idea of bargaining set also inspires some works on allocation of discrete resources in school

choice context in terms of relaxing stability notion, which is central to matching theory: If a student

has an objection to an allocation because she claims an empty slot at a school, then there will be

a counter-objection once she is assigned to that school since the priority of some other student will

be violated at that school. Roughly speaking, an outcome is in the bargaining set if and only if for

each objection to the outcome, there exists a counter-objection (Ehlers, Hafalir, Yenmez, and Yildirim,

2014).2 Some other works refer to bargaining set in similar ways (see Ehlers (2010), Kesten (2010),

Alcade and Romero-Medina (2015)).

The paper is organized as follows: Section 2 introduces the model and the graph theoretical frame-
1There are slight differences in the formulation of the bargaining set defined by Aumann and Maschler (1964) and Mas-

Colell (1989). See Vohra (1991) for the differences between these two formulations and also other variants of the notion.
2Ehlers, Hafalir, Yenmez, and Yildirim (2014) refer to this property as constrained non-wastefulness in the school

choice context.
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work, on which the mechanisms and the proofs are built. Section 3 defines core and bargaining set

notions. Section 4 defines the extensions of the top trading cycles rule (defined on the strict preferences)

to the weak preferences domain. We introduce an alternative class of assignment rules in Section 5.

We state and prove our main result in Section 6.

2 Model

2.1 Assignment Problem

A non-empty finite set of objects O has to be allocated to a non-empty finite set of agents N with

|N | = |O| in such a way that each agent receives exactly one object; monetary transfers between agents

are not permitted.

An assignment is a bijection µ : N → O. An endowment profile is a bijection ω : N → O.

Each agent i has a complete and transitive preference relation Ri on O; that is, we allow for indif-

ferences. Let bi(O′) be the set of agent i’s best objects in O′ ⊆ O. Let αi1 = bi(O) and for each k,

αik = bi(O \ ∪
l=1,...,k−1

αil) (note that for each k, αik is an indifference set). Let ki be the number of

agent i’s indifference sets. Whenever convenient, agent i’s preferences are represented as a sequence of

her indifference sets in the associated rank order; that is, Ri = αi1, αi2, . . . , αiki . Let R = (Ri)i∈N be

a preference profile. We fix O and N throughout the paper and denote an assignment problem by a

pair (ω,R). An assignment µ is individually rational if for each i, µ(i) Ri ω(i).

An entitlement is a pair: a set of agents N ′ ⊂ N and a correspondence ε : N ′ 7−→ O such

that for each i ∈ N ′, ε(i) ⊆ αik for some k. An entitlement essentially maps each agent (in a given

subset of agents) to a welfare level via an indifference class, rather than via a particular object. An

entitlement (N ′, ε) is feasible under µ if µ is individually rational and for each i ∈ N ′, µ(i) ∈ ε(i).

An entitlement (N ′, ε) is feasible if there exists an assignment µ such that it is feasible under µ.

2.2 Preliminaries on Graphs

Let G = (V,E) be a directed graph, where V is the set of vertices and E is the set of directed

edges, that is a family of ordered pairs from V . For each U ⊂ V , let δin(U) be the set of edges

(u, v) ∈ E such that u ∈ V \ U and v ∈ U (i.e. the set of edges entering U) and δout(U) be the

set of edges (u, v) ∈ E such that u ∈ U and v ∈ V \ U (i.e. the set of edges leaving U). If U
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is a singleton, say U = {v}, then we use δin(v) (and δout(v)) instead of δin(U) (and δout(U)). A

subgraph of G is any directed graph G′ = (V ′, E′) with ∅ 6= V ′ ⊆ V and E′ ⊆ E and each edge

in E′ consisting of vertices in V ′. For a set of vertices T ⊆ V , the subgraph of G induced by T

is the subgraph (T,E′) such that E′ = {(u, v) ∈ E : u, v ∈ T}. A sequence of vertices {v1, . . . vm}

is a path from v1 to vm if (i) m ≥ 1, (ii) v1, . . . , vm are distinct (except for possibly v1 = vm), and

(iii) for each k = 1, . . . , m − 1, (vk, vk+1) ∈ E. A cycle is a path {v1, . . . vm} is a cycle if m ≥ 2

and v1 = vm.

A set of vertices T ⊆ V is strongly connected if the subgraph induced by T is such that for

any u, v ∈ T , there is a path from u to v. A minimal self-mapped set is a set of vertices S ⊆ V that

satisfies two conditions: (i) S = ∪
v∈S

δout(v)3 and (ii) @S′ with ∅ 6= S′ ⊂ S such that S′ = ∪
v∈S′

δout(v).

The following follows from Proposition 2.2 by Quint and Wako (2004).

Remark 1 Let G = (V,E) be a directed graph. A set of vertices S ⊆ V is non-empty and strongly

connected such that δout(S) = ∅ if and only if S is a minimal self-mapped set.

Whenever convenient, we refer to this equivalence result and say that a set of vertices S is a minimal

self-mapped set if (i) for any two vertices in S, there is a path from one to the other, and (ii) there is

no path from any vertex u ∈ S to any vertex v 6∈ S. The following follows directly from Remark 1 and

theMSMS algorithm introduced by Quint and Wako (2004).

Remark 2 Let G = (V,E) be a directed graph. If for each v ∈ V , δout(v) 6= ∅, then a minimal

self-mapped set exists.

Let w : E → < be a function. We denote
∑

e∈F⊆E
w(e) by w(F ). A function f : E → < is called a

circulation if for each v ∈ V , f(δin(v)) = f(δout(v)). Let d, c : E → < with d ≤ c. A circulation f

respects d and c if for each edge e, c(e) ≥ f(e) ≥ d(e). A minimal self-mapped set S is covered

if there exists an integer-valued circulation f such that for each v ∈ S, f(e) = 1 for some edge e

entering v.
3Note that ∪

v∈S
δout(v) and δout(S) are different sets in general.

5



3 The bargaining set

Let S be a group of agents. When we say agents in S allocate (or reallocate) their endowments,

we imply that they do it in a best possible way; that is, there does not exist another allocation (or

reallocation) of these endowments such that no agent is worse off and at least one agent is better

off than the original allocation (or reallocation). An assignment µ is strictly blocked by S if the

agents in S can reallocate their endowments in a way that makes each of them better off than at µ;

that is, there exists µ′ such that µ′(S) = ω(S) and for each i ∈ S, µ′(i) Pi µ(i). An assignment µ is

blocked by S if the agents in S can reallocate their endowments in a way that makes no agent worse

off and at least one agent better off than at µ; that is, there exists µ′ such that µ′(S) = ω(S) and for

each i ∈ S, µ′(i) Ri µ(i), and for some j ∈ S, µ′(j) Pj µ(j). An assignment µ is weakly blocked

by S if the agents in S can reallocate their endowments in a way that makes no agent worse off; that

is, there exists µ′ such that µ′(S) = ω(S) and for each i ∈ S, µ′(i) Ri µ(i). The weak core is the set

of assignments that are not strictly blocked by any coalition. The core is the set of assignments that

are not blocked by any coalition.

An assignment µ can be considered as a set of cycles, where each agent in a cycle is assigned to the

object she points to in that cycle. When an assignment µ is blocked by a coalition S, we assume the

least about the formation of the coalition and that the resulting assignment η is the following: each

agent in the coalition S is assigned to the endowment of another agent in S; each agent in a cycle,

which has an empty intersection with S, is assigned to the same object which she is assigned under µ;

and every other agent is assigned to her endowment. Thus, a blocking coalition’s effect is only through

the cycles it breaks down. When we say that coalition S blocks µ via η, we mean that η is the

assignment described above.

If the preferences are strict, then the core is non-empty (it is a singleton set). On the other hand,

if we allow indifferences, the core might be an empty set, but as a weaker notion, the weak core is

always non-empty.

A different notion is bargaining set: any blocking by a coalition S is deterred by another coalition,

say C(S), including agents in S. The agents in S \ C(S) (the ones, who are better off in case blocking

by S occurs) cannot convince the agents in S ∩ C(S) to take part in this blocking coalition. Next, we

define this notion. Let M denote the set of individually rational assignments. For a given assignment
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µ and a set of agents C, let MC(µ) = {µ′ ∈M : for each i ∈ C : µ′(i) Ii µ(i)}.

Definition 1 An assignment µ is in the bargaining set if and only if

(i) it is not strictly blocked by any coalition, and

(ii) if S blocks µ via η, then there exists C(S) with S ∩ C(S) 6= ∅, such that C(S) blocks η via some

µ′′ ∈MC(S)(µ).

Bargaining set is strong in the sense that only a specific deterrence prevents blocking: the agents

in C(S) can deter blocking only via an assignment indifferent for themselves to the current assignment.

Note that if this restriction on deterrence is removed, then, since deterring blocking coalitions is easier

in this case, the notion will be weaker. Thus, this restriction actually allows less amount of blocking

and makes the notion move away further from weak core to core. For an assignment problem (ω,R),

we denote the bargaining set by B(ω,R).

Bargaining set is clearly stronger than weak core. There is another motivation for a stronger notion

than weak core, which is, as the next example demonstrates, “too” weak.

Example 1 Let N = {i1, i2, i3, i4, i5, i6} and O = {o1, o2, o3, o4, o5, o6} where ω(ik) = ok. The prefer-

ences are given below with each set in the table being an indifference set:

Ri1 Ri2 Ri3 Ri4 Ri5 Ri6

{o2} {o3, o4} {o1} {o2, o6} {o6} {o5}

{o1} {o2} {o3} {o4} {o4} {o6}

{o5}

The assignment µ = (o2, o3, o1, o6, o4, o5) is in the weak core and the core is empty. One can argue

that agents i5 and i6 are endowed with each other’s unique best objects and thus, they should be able

to exchange their objects. Also, note that the coalition S = {i5, i6} weakly dominates µ and any

assignment, at which agent i5 and i6 are assigned objects o6 and o5, respectively, is not weakly blocked

by a coalition including agent i5 or i6.

Example 1 suggests that we need a stronger notion to account for such cycles S = {i5, i6} above.

This simple requirement can be captured via the following property which guarantees such trades.
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Definition 2 An assignment µ satisfies trade property if for any cycle S = {a1, a2, ..., aK} where

ω(ak) is agent ak−1’s single best object for k = 2, ...,K and ω(a1) is agent aK ’s single best object,

µ(ak−1) = ω(ak) for k = 2, ...,K and µ(aK) = ω(a1).

Proposition 1 Let (ω,R) be an assignment problem and let µ ∈ B(ω,R). If A is a minimal self-

mapped set which is covered, then µ allocates the objects in A to the agents in A such that each agent

receives one of her top objects in A.

Proof. Suppose not. Then, S = A blocks µ, say via η, under which each agent in A receives a top

object. Since µ ∈ B(ω,R), there is a C(S) with C(S) ∩ S 6= ∅ such that C(S) blocks η via some

µ′ ∈ MC(S)(µ). Thus each agent in C(S) ∩ S receives a top object under both µ and η. Note that

C(S) * S, since otherwise C(S) cannot block η via some µ′ ∈MC(S)(µ). There is an agent in C(S)∩S

who receives, under η, an object owned by some agent in C(S) \ S. But since S is a minimal self-map

set , this object cannot be a top object for this agent, contradicting with the fact that each agent in

C(S) ∩ S receives a top object under η.

A direct corollary to the above proposition is the following.

Corollary 1 If an assignment is in the bargaining set, then it satisfies trade property.

Proof. Since any cycle S = {a1, a2, ..., aK}, where ω(ak) is agent ak−1’s single best object for k =

2, ...,K and ω(a1) is agent aK ’s single best object, is a minimal self-mapped set that is covered, by

Proposition 1, µ assigns each agent in S a top object from the endowment set of the agents in S. Since

each agent has a single top object, trade property is satisfied.

4 The class of the Top Trading Cycles (TTC) assignment rules

The TTC class is a set of assignment rules as an extension of the well-known TTC mechanism defined

on the strict domain. Each rule in this class takes an assignment problem; that is, a preference profile

and an endowment profile, (ω,R), as input and produces an allocation, TTC(ω,R), as an output.

Let F be a selection rule: for each minimal self-mapped set that is not covered, F selects one of the

cycles in the minimal self-mapped sets. The TTC updates the endowment profile by assigning each

agent in the cycle to the object that she points to in the same cycle. We call this endowment update
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as top-trading of the cycle. Let ω1 = ω and for k ≥ 1, the steps below are repeated until all agents

and objects are removed.

Step k.1: Let each agent point to her maximal objects among the remaining objects and each

remaining object points to its owner according to the endowment profile ωk. Select a minimal self-

mapped set T in this digraph.

Step k.2: (i) If T is covered, then each agent in T is removed by assigning her one of the best

objects in T . (ii) Otherwise, select one of the cycles in the minimal self-mapped set using the selection

rule F , and update the endowment profile by top-trading of the cycle to obtain ωk+1.

Lemma 1 If an agent i’s endowment is updated at some step before Tk is removed, then agent i gets

a top object among the remaining objects after
⋃k−1

j=0 Tj and µ(
⋃k−1

j=0 Tj) are removed.

Proof. Once an agent’s endowment is updated before Tk is removed the agent is tentatively endowed

with a top object among the remaining objects after
⋃k−1

j=0 Tj and µ(
⋃k−1

j=0 Tj) are removed. Since, at

any step before the agent is assigned an object and removed, the agent always points to her top objects

among the remaining objects, she is never degraded to an object that is not a top object among the

remaining ones. Thus, she ends up with a top object among the remaining ones.

Lemma 2 If an agent i’s endowment is updated at some step before Tk is removed, then the original

owner of agent i’s new endowment receives a top object among the remaining objects after
⋃k−1

j=0 Tj and

µ(
⋃k−1

j=0 Tj) are removed.

Proof. First note that any agent who originally owns a top object receives a top object, otherwise the

mechanism would not be individually rational. Now, suppose at some step, say before Tk is removed,

that agent i does not originally own a top object among the remaining objects after
⋃k−1

j=0 Tj is removed.

And suppose her endowment is updated right before Tk is removed, such that she now owns (tentatively)

a top object among the remaining objects after
⋃k−1

j=0 Tj and µ(
⋃k−1

j=0 Tj) are removed. Then, in the

endowment update that is carried out in this step, agent i points to an object, call it ok, which is one of

her top objects among the remaining objects and according to the prior it is the highest ranked among

the remaining objects. Note that agent i does not own a top object among the remaining objects until

this step, in the chain partition i ∈ N0. So among her top objects she points to the one according to

the priority ordering. Now there are two cases, either the current owner of ok, call her j, is also the
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original owner of ok, or not. If it is the first case, then j gets a top object by Lemma 1. But if it is the

second case, then it means that the object ok was in an earlier endowment update hence the original

owner of ok, say agent k, received (tentatively) a top object at some earlier step. Again, by Lemma 1,

agent k who is the original owner of agent i’s new endowment gets a top object.

5 A new class of assignment rules: Top Deferred Trading Cycles

(TDTC)

Let (N ′, ε) be a feasible entitlement. Since agents in N ′ are entitled certain welfare levels, it could

be that only some objects are available for a given agent. Let O(i) be the set of available objects for

agent i (the interpretation is that agent i can receive an object only from this set).4 Let the triple

(N ′, ε, (O(i))i∈N ) denote a partial assignment problem where each i ∈ N ′ is entitled one of the

objects in ε(i) and only the objects in O(i) are available for agent i ∈ N .

Given a partial assignment problem (N ′, ε, (O(i))i∈N ), the graph G(N ′, ε, (O(i))i∈N ) is the associ-

ated directed graph where each object points to its owner and each agent i ∈ N points to the objects

in bi(O(i)). The partial assignment problem, when there is no entitlement, is denoted by (∅, ε0, O0)

where O0 = (O0(i))i∈N with O0(i) = O for each i ∈ N . The associated directed graph G(∅, ε0, O0) is

such that each object points to its owner and each agent points to her best objects.

We denote a cycle in the graph G(N ′, ε, (O(i))i∈N ) by the set of agents included in the cycle

unless otherwise noted and no confusion arises. An improvement cycle is a cycle including an agent

in N \ N ′. A feasible improvement cycle is an improvement cycle S such that there exists an

individually rational assignment µ with the following properties: (1) the entitlement (N ′, ε) is feasible

under µ, (2) each agent i ∈ S \N ′, µ(i) ∈ bi(O(i)).

The TDTC rule is based on creating new entitlements at each step while respecting existing ones

and also individual rationality. The TDTC is similar to the Top Trading Cycles (TTC) algorithm since

a cycle is selected at each step. But there is an important difference: agents in the cycle do not trade

their (current) endowments (as it is in the TTC algorithm), rather each agent in the cycle is reserved

an object from the indifference class including the object that she points to and trading is deferred

to the end. An implication is that the endowment profile does not change throughout the algorithm
4In the definition of the TDTC below, we specify how (O(i))i∈N is sequentially constructed.
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as opposed to the TTC, where endowments are updated by assigning each agent the object that she

points to in the selected cycle at each step.

Top Deferred Trading Cycles Algorithm: LetN0 = ∅. For each k ≥ 1, letGk−1 = G(Nk−1, εk−1, Ok−1).

(k.1) In the graph Gk−1, select a feasible improvement cycle Nk. Let Sk = Nk \Nk−1. For each N ′ ⊆

Nk = Nk−1 ∪ Sk such that
∣∣∣∣ ∪i∈N ′bi(Ok−1(i))

∣∣∣∣ = |N ′|, the objects in ∪i∈N ′bi(Ok−1(i)) are unavailable

for the agents in N \ N ′. For each i ∈ N , the set of available objects Ok(i) is the set Ok−1(i)

minus unavailable objects for her. Let Ok = (Ok(i))i∈N . The entitlement εk on Nk is defined as

follows: for each i ∈ Nk−1, εk(i) = εk−1(i) and for each i ∈ Sk, εk(i) = αil with αil ⊇ bi(Ok−1(i)).

(k.2) If Nk = N , the algorithm terminates and it gives an assignment µ such that for each i, µ(i) ∈

εk(i).

The TDTC is a class and each selection of cycles gives an assignment (or an essentially single-valued

set of assignments: each agent is indifferent between any two assignments in this set). For each

problem (ω,R), the set TDTC(ω,R) denotes the set of outcomes of the TDTC; that is, the assignments

obtained by the TDTC via all possible selections of feasible improvement cycles in Step k.1.

6 A characterization of the bargaining set

Our main result is that the bargaining set is characterized by the TTC and also by the TDTC. We

present this result, the proof of which relies on the graph theoretical framework introduced in Section 2.2

and Hoffman’s Circulation Theorem, an important result from graph theory.

Theorem 1 An assignment is in the bargaining set if and only if it is an outcome of the TTC.

PROOF of THEOREM 1: We prove the theorem in parts: (I) the TDTC is well-defined, (II) each

assignment in the bargaining set is an outcome of the TDTC, (III) each outcome of the TTC is in the

bargaining set, and (IV) for each outcome µ of the TDTC, there exists a selection rule F such that µ

is obtained by the TTC via F .

I. The TDTC is well-defined. We show that a feasible improvement cycle at Step k.1 exists and
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thus, the TDTC algorithm is well-defined.

Base case: At Step 1, there exists at least one improvement cycle and it is feasible to assign each

agent in this cycle the object she points to. Thus, there is a feasible improvement cycle, which implies

that the statement holds for Step 1.

Inductive step: We assume that the TDTC is well defined through steps 1 to k − 1 and thus, there

exists an assignment such that each agent i ∈ Nk−1 receives an object from the set εk−1(i). We use a

graph theoretical notation to prove the inductive hypothesis that there exists a feasible improvement

cycle in the graph Gk−1; that is, Step k.1 of the TDTC is well-defined.

In the TDTC algorithm, a cycle is chosen at each step, and each agent in this cycle is entitled one

of the objects that she points to at that step. This corresponds to a set of new constraints along the

existing ones such that each agent i ∈ Nk−1 is already entitled one of the objects from the set εk−1(i).

These constraints possibly imply that certain objects are no longer available for other agents. We

argue that given these existing constraints at each step, the existence of a feasible improvement cycle

is implied by the existence of a circulation respecting properly defined bounds c, d. For this argument,

we reconstruct the graph and bounds d and c at each step to be consistent with the existing constraints.

The reason we refer to circulations is the difficulty due to the fact that not every improvement cycle

is feasible, as shown in the following example.

Example 2 In Figure 1 below, cycle C1 is chosen and entitlement is such that agent ai is entitled to

{hx, hy} and agent aj is entitled to {hu, hz}. Note that non of the objects become unavailable but cycle

C2 is not feasible. But there is a feasible cycle for sure, which is C3 in this case.

For the graph Gk−1, define the functions dk−1, ck−1 as follows: For each edge e in the graph Gk−1,

we set ck−1(e) = 1. Since the upper-bound function c is constant at each step, we suppress its

subscript, and set c = 1 for each k. If an edge e is from an object to an agent in Nk−1, then we

set dk−1(e) = 1; otherwise, we set dk−1(e) = 0. Since we suppress the upper-bound c, for convenience

we say a circulation f in Gk−1 respects dk−1 if for each edge e, 1 ≥ f(e) ≥ dk−1(e). Also, if a

circulation f is such that for an agent i and an object o, f((i, o)) = 1, we say that object o is

assigned to agent i under f . As demonstrated next, the existence of a circulation respecting dk−1

implies the feasibility of the entitlement (Nk−1, εk−1).
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Figure 1: Not every improvement cycle is feasible.

Lemma 3 If there exists a circulation in Gk−1 respecting dk−1, then the entitlement (Nk−1, εk−1) is

feasible.

Proof. Let f be a circulation in Gk−1 respecting dk−1. Since for each e from an object to an agent

in Nk−1, dk−1(e) = 1, and f respects dk−1, for each agent i ∈ Nk−1, there is an edge with the f−value

equivalent to one to an object in bi(Ok−1(i)) ⊆ εi(k − 1). Let µ be an assignment defined as follows:

for each i ∈ N such that f(i, o) = 1 for some o ∈ O, let µ(i) = o; for any other agent j, let µ(j) = ω(j).

Since each other agent points to her best available objects in the graph Gk−1, this is an individually

rational assignment and thus, the entitlement (Nk−1, εk−1) is feasible.

Lemma 3 enables us to slightly modify the induction argument in the following way: The existence

of a feasible improvement cycle in the base case is equivalent the existence of a circulation respecting d1

such that, for each e from the object in the feasible improvement cycle to its owner, d1(e) = 1 and

for each other edge, it is equal to zero. Thus, inductive hypothesis is that there exists a circulation

in Gk−1 respecting dk−1. Let dk be a lower-bound function such that:

for each i ∈ N, dk((ω(i), i)) ≥ dk−1((ω(i), i)), (1)

for some j ∈ N \Nk−1, dk((ω(j), j)) = 1 > dk−1((ω(j), j)) = 0. (2)

13



Let S be the set of the agents satisfying property (2). Lemma 3 implies that, if there exists a circulation

respecting dk in the graph Gk−1, then there exists an assignment, under which the entitlement for

the agents in (Nk−1, εk−1) is feasible and each agent i ∈ S is assigned one of her best available

object, that is an object from the set bi(Ok−1(i)), which is equivalent to the existence of a feasible

improvement cycle. Thus, showing the existence of a circulation respecting a lower-bound function dk

with properties (1) and (2) as defined above (as the inductive step) is sufficient for the TDTC algorithm

being well-defined. The existence of a circulation guarantees that individual rationality is maintained

throughout the algorithm since by definition, a circulation implies that whenever an object becomes

unavailable, its owner is assigned to an object under that circulation. Thus, we have the following

remark:

Remark 3 If an object o becomes unavailable for some agents at Step k, then ω−1(o) ∈ Sk′ for

some k′ ≤ k.

Our proof of the existence of a circulation respecting a lower-bound function dk with proper-

ties (1) and (2) relies mostly on the following theorem which characterizes the conditions under which

there exists a circulation respecting the bounds on the set of edges E.

Hoffman’s Circulation Theorem Let G = (V,E) be a directed graph and let d, c : E → < with

d ≤ c. Then, there exists a circulation f satisfying d ≤ f ≤ c if and only if for each U ⊆ V ,

d(δin(U)) ≤ c(δout(U)). If moreover d and c are integers, f can be taken integer-valued.

By our inductive hypothesis, Hoffman’s Circulation Theorem implies that for each U ⊆ N ∪ O,

dk−1(δ
in(U)) ≤

∣∣δout(U)
∣∣.5 At Step k, there exists at least one agent whom is not entitled any ob-

ject (note that otherwise, the algorithm terminates). This implies that in the graph Gk−1 with the

lower-bound function dk−1, there exists at least one edge from an object to its owner with lower-bound

zero.6 If in the graph Gk−1, for each U ⊂ N ∪ O, dk−1(δin(U)) <
∣∣δout(U)

∣∣, then Hoffman’s Circu-

lation Theorem implies that by increasing the lower-bound of an edge e from an object to an agent

who is not entitled any object,7 a circulation exists respecting this new lower-bound and the inductive
5Note that since the upper-bound (or capacity) function c is constant at one, we can rewrite the right-hand side of

the condition in Hoffman’s Circulation Theorem as the number of leaving edges.
6Note that by construction of the bounds, only edges from objects to their owners can have a lower-bound of one.

All edges from agents to objects have lower-bound zero. This is sufficient for the underlying entitlement to be feasible
(see Lemma 3).

7That is, define dk as follows: let dk(e) = 1 (note that dk−1(e) = 0) and for all other edges, dk and dk−1 coincide.
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step follows trivially. Thus, we assume that there exists at least one set of vertices U ⊂ N ∪ O, such

that dk−1(δin(U)) =
∣∣δout(U)

∣∣. Let AX be the set of agents in the set X, and OX the set of objects in

the set X.

Lemma 4 We can assume without loss of generality that OU = ∪
i∈AU

bi(Ok−1(i)).

Proof. Let i ∈ AU and o ∈ bi(Ok−1(i)). Suppose o 6∈ OU . Thus, the edge (i, o) is in δout(U). Note that

the inequality in Hoffman’s Circulation Theorem is satisfied for any set of vertices, in particular for U ∪

{o}. Moreover, dk−1(δin(U ∪{o})) ≥ dk−1(δin(U))−1 and this holds with equality only if ω−1(o) ∈ AU

and dk−1((o, ω−1(o))) = 1 (that is, agent ω−1(o) is in Nk−1). Moreover,
∣∣δout(U ∪ {o})∣∣ ≤ ∣∣δout(U)

∣∣−1,
and this holds with equality only if agent i is the only agent in AU pointing to o. Thus, by these two

inequalities, (1) the only agent in the set AU pointing to object o is agent i, and (2) agent ω−1(o) is

in AU ∩Nk−1. But then, dk−1(δ
in(U ∪ {o})) =

∣∣δout(U ∪ {o})∣∣. Thus, we can assume without loss of

generality that OU ⊇ ∪
i∈AU

bi(Ok−1(i)).

Suppose there exists o ∈ OU \ ∪
i∈AU

bi(Ok−1(i)). Suppose also ω−1(o) 6∈ AU . Thus, there is an edge

from the set U to the set N \U . Since there is no vertex in U pointing to o, we have
∣∣δout(U \ {o})∣∣ =∣∣δout(U)

∣∣− 1. Since the sets U and U \ {o} have the same sets of agents (AU ) and also the same sets

of objects pointing to these agents, dk−1(δin(U \ {o})) = dk−1(δ
in(U)). This implies that dk−1(δin(U \

{o})) >
∣∣δout(U \ {o})∣∣, which contradicts Hoffman’s Circulation Theorem. Thus, ω−1(o) ∈ AU . Sup-

pose dk−1((o, ω−1(o))) = 1. Since there is no edge from an agent in AU to o, and also no edge

from object o to an agent in A \ AU , the sets U and U \ {o} have the same set of leaving edges;

that is
∣∣δout(U \ {o})∣∣ = ∣∣δout(U)

∣∣. But since object o points to an agent in AU and this edge has

a lower-bound one, dk−1(δin(U \ {o})) = dk−1(δ
in(U)) + 1. This implies that dk−1(δin(U \ {o})) >∣∣δout(U \ {o})∣∣. This contradicts with Hoffman’s Circulation Theorem. Thus, dk−1((o, ω−1(o))) = 0.

As in the previous case, the sets U and U\{o} have the same set of leaving edges; that is
∣∣δout(U \ {o})∣∣ =∣∣δout(U)

∣∣. Moreover, since the edge from object o to its owner ω−1(o) has a lower-bound zero,

dk−1(δ
in(U \ {o})) = dk−1(δ

in(U)). Thus, dk−1(δin(U \ {o})) =
∣∣δout(U \ {o})∣∣, and we can assume

without loss of generality that OU ⊆ ∪
i∈AU

bi(Ok−1(i)).

Let A1
X be the set of agents in AX who are entitled an object (vertices with an entering edge of

lower-bound one) and let A0
X = AX \ A1

X . For n = 0, 1, let An,Y
X be the set of agents in An

X , the

endowment of each of whom is in OY . The following lemma demonstrates that each edge from an
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object in N \ U into U has a lower-bound one.

We consider a set of vertices U ⊂ N ∪ O, such that dk−1(δin(U)) =
∣∣δout(U)

∣∣ and assume by

Lemma 4 that OU = ∪
i∈AU

bi(Ok−1(i)). We need to show that there exists a circulation f respecting dk−1

with f(e) = 1 for some e = (o, ω−1(o)) where ω−1(o) ∈ N \Nk−1. This completes the proof (that the

TDTC algorithm is well-defined) since by definition, this implies the existence of a cycle including o

and ω−1(o), which is a feasible improvement cycle. So, let f be a circulation such that for no edge

including an agent in N \Nk−1, f(e) = 1.

Lemma 5 The set A0,U
N\U is empty.

Proof. Let i ∈ A0
U such that ω(i) ∈ N \ U . By definition, the set OU consists of objects endowed by

the agents A1,U
U and A0,U

U , and also the agents A1,U
N\U and A0,U

N\U . Thus,

|OU | =
∣∣∣A1,U

U

∣∣∣+ ∣∣∣A0,U
U

∣∣∣+ ∣∣∣A1,U
N\U

∣∣∣+ ∣∣∣A0,U
N\U

∣∣∣ . (3)

Also, the set AU consists of A1,U
U , A0,U

U , A1,N\U
U and A0,N\U

U .

Since U is such that dk−1(δin(U)) =
∣∣δout(U)

∣∣ and by Lemma 4, no agent in U points to an object

in N \ U , we have that ∣∣∣A1,N\U
U

∣∣∣ = ∣∣∣ω(A1,U
N\U )

∣∣∣+ ∣∣∣ω(A0,U
N\U )

∣∣∣ , (4)

note that the right-hand side is the number of edges with lower-bound one entering U , and the left-hand

side is the number of all edges leaving U .

Since f is a circulation such that for no edge e including an agent in N \ Nk−1, f(e) = 1, only

the edges entering and leaving A1,U
U , A1,N\U

U , ω(A1,U
U ) and ω(A1,U

N\U ) have an f−value equivalent to

one (that is, agents in A1,U
U , A1,N\U

U are assigned to objects in ω(A1,U
U ) and ω(A1,U

N\U ) under f). This

implies that ∣∣∣A1,U
U

∣∣∣+ ∣∣∣A1,N\U
U

∣∣∣ = ∣∣∣ω(A1,U
U )

∣∣∣+ ∣∣∣ω(A1,U
N\U )

∣∣∣ . (5)

Since
∣∣∣A1,U

U

∣∣∣ = ∣∣∣ω(A1,U
U )

∣∣∣, this implies that

∣∣∣A1,N\U
U

∣∣∣ = ∣∣∣ω(A1,U
N\U )

∣∣∣ . (6)

Thus, equalities (4) and (6) together imply that
∣∣∣ω(A0,U

N\U )
∣∣∣ = 0 (that is, A0,U

N\U = ∅).
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Lemma 6 There exists a lower-bound function dk, which satisfies properties (1) and (2), and a cir-

culation respecting dk. Thus, there exists a feasible improvement cycle.

Proof. Let f be a circulation respecting dk−1 such that for no edge e including an agent in N \

Nk−1, f(e) = 1.

Case 1: The set A0,U
U is non-empty.

Suppose that there exists A′ ⊆ A0,U
U such that for each i ∈ A′, ω(A′) ∩ bi(Ok−1(i)) 6= ∅. Since there

is an edge from each vertex in A′ ∪ ω(A′) to a vertex in the same set, there is a cycle C including

only the vertices in A′ ∪ ω(A′). Let dk be such that for each object o in C, dk((o, ω−1(o))) = 1, and

for each other object o′, dk((o′, ω−1(o′)) = dk−1((o
′, ω−1(o′))). Clearly, the lower-bound function dk

satisfies property (1). Moreover, since each object o in C is such that ω−1(o) ∈ A′ ⊆ A0,U
U , by

definition dk−1((o, ω−1(o))) = 0. Thus, dk satisfies property (2) as well. Moreover, since by assumption,

circulation f is such that for no edge e including an agent inN\Nk−1, f(e) = 1, the following function f ′

is a circulation as well and respects dk: for each edge e in the cycle, f ′(e) = 1, and for each other

edge e′, f ′(e′) = f(e′). Thus, there exists a feasible improvement cycle.

Suppose that for each A′ ⊆ A0,U
U , there exists i ∈ A′ such that ω(A′) ∩ bi(Ok−1(i)) = ∅ (†).

Suppose for each i ∈ A1
U , bi(Ok−1(i)) ∩ ω(A0,U

U ) = ∅. By Lemma 5, this implies that ∪
i∈A1

U

bi(Ok−1(i)) =

ω(A1,U
U ) ∪ ω(A1,U

N\U ). But then,

∣∣∣∣∣ ∪i∈A1
U

bi(Ok−1(i))

∣∣∣∣∣ = ∣∣∣ω(A1,U
U )

∣∣∣+ ∣∣∣ω(A1,U
N\U )

∣∣∣ = ∣∣∣A1,U
U

∣∣∣+ ∣∣∣A1,N\U
U

∣∣∣ = ∣∣A1
U

∣∣ , (7)

where the second equality follows from equality (5) in Lemma 5, and the third equality follows from

the definition of A1
U . By definition of the TDTC, this implies that the objects in ω(A1,U

U ) ∪ ω(A1,U
N\U )

are unavailable for the agents in N \A1
U , in particular for the agents in A0,U

U . Thus, for each i ∈ A0,U
U ,

we have that Ok−1(i) ∩ OU = ∅, which contradicts the assumption that OU = ∪
i∈AU

bi(Ok−1(i)) by

Lemma 4. Thus, there exists j ∈ A1
U such that bj(Ok−1(j)) ∩ ω(A0,U

U ) 6= ∅.

Let i1 ∈ A0,U
U such that ω(i1) ∈ bj(Ok−1(j)). By (†), ω(i1) 6∈ bi1(Ok−1(i1)). Let i2 ∈ A0,U

U such

that ω(i2) ∈ bi1(Ok−1(i1)). Let A′ = {i1, i2} in (†). Since ω(i2) ∈ bi1(Ok−1(i1)), by (†), {ω(i1), ω(i2)} ∩

bi2(Ok−1(i2)) = ∅. Since the set A0,U
U is finite, by applying (†) repeatedly in this way, we obtain a

sequence i1, . . . , im in A0,U
U such that for l = 1, . . . ,m − 1, ω(il+1) ∈ bil(Ok−1(il)), and for some o ∈

ω(A1,U
U ) ∪ ω(A1,U

N\U ), o ∈ bim(Ok−1(im)) (?).
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Let S = {i1, . . . , im}. Let dk be such that for each object o ∈ ω(S), dk((o, ω−1(o))) = 1, and for

each other object o′, dk((o′, ω−1(o′)) = dk−1((o
′, ω−1(o′))) (⊗). Clearly, the lower-bound function dk

satisfies property (1). Moreover, since each object o ∈ ω(S) is such that ω−1(o) ∈ S ⊆ A0,U
U , by

definition dk−1((o, ω−1(o))) = 0. Thus, dk satisfies property (2) as well.

We claim that there is bijection η : S ∪ A1
U → ω(S) ∪ ω(A1,U

U ) ∪ ω(A1,U
N\U ) such that for each i ∈

S ∪ A1
U , η(i) ∈ bi(Ok−1(i)).8 To prove the existence, we refer to the well-known Hall’s Marriage

Theorem.

Hall’s Marriage Theorem Let A= {A1, . . . , An} be a family of subsets of some finite set X. There

exists a bijection π : {1, . . . , n} → Y ⊆ X such that for each i ∈ {1, . . . , n}, π(i) ∈ Ai if and only if for

each subset I of {1, . . . , n} ∣∣∣∣ ∪i∈I Ai

∣∣∣∣ ≥ |I| . (8)

In our context, Hall’s Marriage Theorem gives the necessary and sufficient conditions for the existence

of such a bijection: there exists a bijection η : S ∪ A1
U → ω(S) ∪ ω(A1,U

U ) ∪ ω(A1,U
N\U ) such that for

each i ∈ S ∪ A1
U , η(i) ∈ bi(Ok−1(i)) if and only if for each subset A′ of S ∪ A1

U ,

∣∣∣∣ ∪i∈A′ bi(Ok−1(i))

∣∣∣∣ ≥ ∣∣A′∣∣ . (9)

Suppose the claim does not hold. Then, by the condition (9), there exists a set A′ ⊆ S ∪ A1
U such

that
∣∣∣∣ ∪i∈A′ bi(Ok−1(i))

∣∣∣∣ < |A′|. Since each agent in S has a different best available object, the set A′

cannot be a subset of S. Also, f is a circulation respecting dk−1 such that for no edge e including an

agent in N \Nk−1, f(e) = 1 and agents in A1
U are assigned to objects in ω(A1,U

U ) ∪ ω(A1,U
N\U ) under f .

Thus, the set A′ cannot be a subset of A1
U neither. Suppose the set A′ does not include im. Each agent

in il ∈ A′ ∩ S can be assigned to object ω(il+1) and each agent i ∈ A′ ∩ A1
U can be assigned to the

object, which she is assigned under f . Hall’s Marriage Theorem implies that condition (9) holds for

the set A′ and each subset of it, contradicting with the set A′ violating (9). Thus, im ∈ A′.
8Since η is such a bijection and f is a circulation, the following function f ′ is also a circulation respecting dk: for each

edge e in U , f ′(e) = 1 if and only if e is from an object in ω(S) ∪ ω(A1,U
U ) to its owner, or from an agent i ∈ S ∪ A1

U to
the object η(i), and for any other edge e′, f ′(e′) = f(e′).
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Let A′ be such that im ∈ A′ and A′ ∩ A1
U 6= ∅. Then, since

∣∣∣∣ ∪i∈A′ bi(Ok−1(i))

∣∣∣∣ < |A′|, we have

∣∣∣∣ ∪i∈A′∩S
bi(Ok−1(i))

∣∣∣∣+
∣∣∣∣∣ ∪
i∈A′∩A1

U

bi(Ok−1(i))

∣∣∣∣∣ < ∣∣A′ ∩ S∣∣+ ∣∣A′ ∩ A1
U

∣∣ . (10)

Since
∣∣∣∣ ∪i∈A′∩S

bi(Ok−1(i))

∣∣∣∣ ≥ |A′ ∩ S| and
∣∣∣∣∣ ∪
i∈A′∩A1

U

bi(Ok−1(i))

∣∣∣∣∣ ≥ ∣∣A′ ∩ A1
U

∣∣, the intersection of the

two sets ∪
i∈A′∩S

bi(Ok−1(i)) and ∪
i∈A′∩A1

U

bi(Ok−1(i)) cannot be empty. (Note that some of the objects

in ∪
i∈A′∩A1

U

bi(Ok−1(i)) are possibly in the set ω(S), but since under f each agent in A1
U can be assigned

to an object in ω(A1,U
U ) ∪ ω(A1,U

N\U ), actually,

∣∣∣∣∣ ∪
i∈A′∩A1

U

(
bi(Ok−1(i)) ∩

(
ω(A1,U

U ) ∪ ω(A1,U
N\U )

))∣∣∣∣∣ ≥ ∣∣A′ ∩ A1
U

∣∣ . (11)

Thus, it must be that the set ∪
i∈A′∩S

bi(Ok−1(i)) has a non-empty intersection with ∪
i∈A′∩A1

U

bi(Ok−1(i))

in ω(A1,U
U ) ∪ ω(A1,U

N\U ). Note that, by (?), the only such object (which is possibly in this intersec-

tion) is object o (??). First suppose that ω(A0
U ) ∩

(
∪

i∈A′∩A1
U

bi(Ok−1(i))
)

= ∅. But then, con-

dition (10) implies that

∣∣∣∣∣ ∪
i∈A′∩A1

U

bi(Ok−1(i))

∣∣∣∣∣ = ∣∣A′ ∩ A1
U

∣∣. But then, by definition of the TDTC,

object o is not in the set Ok−1(im)) (that is, unavailable for agent im), which is a contradiction

with (?). Thus, ω(A0
U ) ∩

(
∪

i∈A′∩A1
U

bi(Ok−1(i))
)
6= ∅. Suppose there exists an object in the

set ω(A0
U ) \ ω(S). But then, condition (11) implies that

∣∣∣∣∣ ∪
i∈A′∩A1

U

bi(Ok−1(i))

∣∣∣∣∣ > ∣∣A′ ∩ A1
U

∣∣. But,

since we have (??) and also
∣∣∣∣ ∪i∈A′∩S

bi(Ok−1(i))

∣∣∣∣ ≥ |A′ ∩ S|, condition (10) cannot hold. Thus, the

object in ω(A0
U ) ∩

(
∪

i∈A′∩A1
U

bi(Ok−1(i))
)

is in the set ω(S). We can assume without loss of gen-

erality that this object is ω(i1).9 But then, since ω(i1) 6∈ ∪
i∈A′∩S

bi(Ok−1(i)), condition (10) cannot

hold. Thus, we conclude a set A′ satisfying condition (10) does not exist. Thus, by Hall’s Mar-

riage Theorem, there exists a bijection η : S ∪ A1
U → ω(S) ∪ ω(A1,U

U ) ∪ ω(A1,U
N\U ) such that for

each i ∈ S ∪ A1
U , η(i) ∈ bi(Ok−1(i)). But then, by footnote 6, there exists a circulation f ′ which

respects dk, thus there exists a feasible improvement cycle.

Case 2: The set A0,U
U is empty.

9This is because otherwise we can redefine the set S such that the first agent in the sequence constructed (?), is the
owner of the object in ω(A0

U ) ∩
(

∪
i∈A′∩A1

U

bi(Ok−1(i))
)
.
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We claim that U = A1
U ∪ ω(A

1,U
U ) ∪ ω(A1,U

N\U ). Suppose this does not hold. Then, the set A0,N\U
U is

non-empty. Since the set A0,U
U is empty, for each agent i ∈ A1

U , bi(Ok−1(i)) ⊆ ω(A1,U
U ) ∪ ω(A1,U

N\U ). By

equality (5), the objects in ω(A1,U
U ) ∪ ω(A1,U

N\U ) are available only for the agents in A1
U . But then, by

definition of the TDTC, for each agent i ∈ A0,N\U
U , Ok−1(i) ∩

(
ω(A1,U

U ) ∪ ω(A1,U
N\U )

)
= ∅. But this

contradicts with OU = ∪
i∈AU

bi(Ok−1(i)) by Lemma 4. Thus, U = A1
U ∪ ω(A

1,U
U ) ∪ ω(A1,U

N\U ).

The set N \U consists of the agents in A1
N\U = A1,U

N\U ∪ A
1,N\U
N\U and A0

N\U = A
0,N\U
N\U (by Lemma 5,

the set A0,U
N\U is empty), and the objects in ω(A

1,N\U
U ) ∪ ω(A

1,N\U
N\U ) ∪ ω(A

0,N\U
N\U ). Since f is a

circulation respecting dk−1 such that for no edge e including an agent in N \ Nk−1, f(e) = 1, the

agents in A1
N\U are assigned to the objects in ω(A

1,N\U
U ) ∪ ω(A

1,N\U
N\U ). Note that this possible by

equality (6). But then, this is the symmetric to Case 1 above, and the same argument applies: we

construct a sequence of agents (the same way as in (?) ) and a lower-bound function dk (the same way

as in (⊗) ), then show that there exists a circulation f ′ respecting dk.

An equivalent algorithm to the TDTC. Before we prove the equivalence between the TDTC and

the bargaining set, we introduce a slight modification of the TDTC, which is without loss of generality.

This equivalent version of the TDTC enables us to use a simpler exposition in the proof.

In the graph Gk−1, let T be a minimal self-mapped set.10 Let N(T ) be the set of agents in T . Since

each object points to its owner, by definition of a minimal self-mapped set, T consists of a set of agents

and their endowments.11 Thus, T = N(T ) ∪ ω(N(T )). Suppose N(T ) 6⊆ Nk−1.12 Since there is no

edge leaving T , the circulation f respecting dk−1 is such that for each edge e entering T , f(e) = 0.

Thus, the induction argument based on circulations constructed via Lemma 3 through 6 applies to the

subgraph induced by T . Thus, there exists a feasible improvement cycle S in T . Moreover, suppose

each feasible improvement cycle selected until Step k′ ≥ k is disjoint with T . Then, at Step k′, the

set T is a minimal self-mapped set and S is a feasible improvement cycle.

Let S′ be a feasible improvement cycle, which does not belong to a minimal self-mapped set in Gk−1.

Suppose each feasible improvement cycle selected until Step k′ ≥ k belongs to a minimal self-mapped

set at that step. Then, S′ is a feasible improvement cycle at Step k′ as well. Thus, the TDTC can be
10Please see Section 2.2 for the definition of a minimal self-mapped set and other graph theoretical concepts we use in

what follows.
11This follows from the fact that a minimal self-mapped set is strongly connected (Remark 1) and each path to an

agent includes her endowment.
12If N(T ) ⊆ Nk−1, then since T is a minimal self-mapped set, no object in ω(N(T )) is available for agents in N \N(T ).
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redefined such that at each step, a feasible improvement cycle is selected from a minimal self-mapped

set at that step.

Lemma 7 Let Gk−1 be the directed graph at Step k of the TDTC. Let T be a minimal self-mapped set

in Gk−1. If T is covered, then the TDTC assigns each agent i ∈ N(T ) an object from the set Ok−1(i)

(that is, one of the objects which she points to in ω(N(T )).

Proof. Since T is covered in Gk−1, by definition, there is an integer-valued circulation f ′ such that

for each v ∈ T , f ′(e) = 1 for some edge e entering v. Thus, by definition of this circulation, it is

possible to assign each agent i ∈ N(T ) to one of the objects in Ok−1(i). This implies that each time

a feasible improvement cycle is selected from the set T , for each agent i ∈ N(T ), the set of best

available objects is still a subset of Ok−1(i). Thus, the TDTC assigns agent i ∈ N(T ) one of the

objects in Ok−1(i) ⊆ ω(N(T )).

Thus, we modify the TDTC as follows: Let Gk−1 be the graph at the end of Step k − 1. At

Step (k.1), (i) if there exists a minimal self-mapped set T in the graph Gk−1, which is covered, then

each agent i ∈ N(T ) is assigned one of the objects in Ok−1(i) and the objects ω(N(T )) become

unavailable for the agents in N \N(T ),13 otherwise (ii) a feasible improvement cycle is selected from

a minimal self-mapped set in the graph Gk−1.14

II. Each assignment in the bargaining set is an outcome of the TDTC. Let (ω,R) be an

assignment problem and µ be an assignment in the bargaining set. By induction, we assume that for

each step k′ < k, for at least one feasible improvement cycle, each agent in that cycle is assigned

to one of her best available objects in graph Gk′ . We prove that the inductive hypothesis holds for

Step k. That is, given the entitlement defined by µ, say (Nk−1, εk−1), and the graph Gk−1, and a

minimal self-mapped set in this graph, there exists a cycle in this set such that each agent in this cycle

is assigned a best-available object in this graph. This complete the proof since this is equivalent to

Step k.1, where a feasible improvement cycle is chosen and µ is consistent with the new entitlement as

defined in the TDTC. Suppose that in the graph Gk−1, there exists a minimal self-mapped set which is

covered. Then, by Proposition 1, under µ, each agent in this minimal self-mapped set is assigned to one

of the objects she points to. By Lemma 7, this is equivalent to the TDTC at Step k.1. Thus, let T be

13This follows from the fact that
∣∣∣∣ ∪i∈N(T )

bi(Ok−1(i))

∣∣∣∣ = |ω(N(T ))| = |N(T )| and Hall’s Marriage Theorem.
14By Remark 2, part (ii) is well-defined.
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a minimal self-mapped set which is not covered, that is, it is not feasible to assign each agent in N(T )

one of her best available objects. As argued above (in the part where we discuss the modified version

of the TDTC), there exists at least one feasible improvement cycle in T . We prove our result towards

a contradiction by supposing that there exists at least one agent in each of these feasible improvement

cycles, who is not assigned one of the best available objects in the graph Gk−1.

Let S be such a feasible improvement cycle. Since at least one of the agents in this set is not assigned

one of her best available objects, the assignment µ is blocked by S via η. Let η be an assignment such

that each agent in S is assigned one of her best available objects and the entitlement (Nk−1, εk−1) is

feasible. Without loss of generality, suppose that under η, for each feasible improvement cycle in T , it

is not possible to assign each agent in this cycle a best available object. It is without loss of generality,

since, if there exists such a cycle S′, then we consider the blocking coalition as S ∪ S′ instead of S.

Now consider the coalition Nk−1 ∪ S as a blocking coalition via η. Note that we can assume that

agents in this blocking coalition reallocate their endowments according to η, since it is consistent with

the definition of a blocking coalition reallocating their endowments by the definition of the TDTC up

to Step k and also that each agent in S is assigned one of her best available objects in the graph Gk−1

(note that these imply that there is no other reallocation such that no agent is worse off and at least

one agent is better off than the assignment η).

We claim that there does not exist a coalition C(S) in T disjoint with Nk−1 ∪ S, such that C(S)

blocks η via some µ′′ ∈MC(S)(µ). First, note that C(S) cannot be a feasible improvement cycle. The

reason is the following: if C(S) is a feasible improvement cycle, then by reallocating their endowments,

each agent in C(S) is assigned one her best available objects in the graph Gk−1. But this contradicts

with that, under µ, no feasible improvement cycle is such that each agent in this cycle is assigned one

of her best available objects in the graph Gk−1 (note that by definition, each agent i in the cycle C(S)

is indifferent between µ(i) and µ′′(i)). Similarly, C(S) cannot be an improvement cycle which is not

feasible: because the agents in such a set reallocates its endowments under µ′′ such that each of them

is assigned one of the best available objects in the graph Gk−1, but this is not possible under µ since

this is not a feasible improvement cycle. Also, it is clear that C(S) cannot be a non-improvement cycle

since by definition, such a cycle is in the set Nk−1 and cannot block η by µ′′ since each agent i in this

cycle is indifferent between η(i) and µ′′(i). Thus, there does not exist a coalition C(S) in T disjoint

with Nk−1 ∪ S, such that C(S) blocks η via some µ′′ ∈ MC(S)(µ). Thus, if we show that C(S) must
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be in the set T , then the proof is complete.

Suppose there exists a coalition C(S) 6⊆ N(T ) which blocks η via some µ′′ ∈MC(S)(µ). Since C(S) 6⊆

N(T ) and T is a minimal self-mapped set, by definition, there is an agent, say i in C(S), who is not

assigned a best available object under µ′′ ∈MC(S)(µ) with coalition C(S). Then, i does not get a best

available object under µ. Also, i cannot be in (Nk−1 ∪ S) ∩ C(S), otherwise, she would get a best

available object under η via Nk−1 ∪ S but not under µ, contradicting C(S) blocking η. Thus, i must

be in another cycle in T , say cycle S′ ⊆ N(T ) with S′ 6= S. Now since agent i ∈ S′ is not assigned a

best available object under µ, S′ blocks µ, say via η′, but there would be no C(S′) (with a non-empty

intersection with S′), which would block η′. This is because agent i ∈ S′ is assigned a best available

object under η′ but not under µ, thus there is no C(S′) such that µ′ ∈MC(S′)(µ) would block η′. This

contradicts with µ being an assignment in the bargaining set. Thus, each agent in the coalition C(S)

must be assigned a best available object, which implies that C(S) is a cycle in N(T ).

Remark 4 Each outcome of the TDTC is in the bargaining set.

Although this result derives from the implications below, we think it is better to include a simple

proof of this result to demonstrate better the relationship between the TDTC and the bargaining set.

Let (ω,R) be an assignment problem and µ be an outcome of the TDTC. Suppose µ is (strictly)

blocked by a coalition S via ν. Let S = SB ∪ SI where SB is the set of agents in S who are strictly

better off under ν than under µ and SI is the set of agents in S who are indifferent between ν and µ.

Let k? = min{k : S ∩ Sk 6= ∅}.

Lemma 8 SB ∩ Sk? = ∅.

Proof. Suppose SB ∩ Sk? 6= ∅ and let i ∈ SB ∩ Sk? . By definition, agent i ∈ S ∩ Sk? is assigned

under ν an object of another agent in j ∈ S, which is strictly better than µ(i) and unavailable

for i at the beginning of Step k?. That is, ω(j) Pi µ(i) and ω(j) becomes unavailable at some

step k < k?. By Remark 3, this implies that j ∈ Sk′ for some k′ ≤ k. Since j ∈ S, this contradicts

with k? = min{k : S ∩ Sk 6= ∅}.

By Lemma 8, S = SB cannot hold, which implies that S cannot strictly block µ, thus part (i) of

Definition 1 follows immediately. Now, suppose S blocks µ via ν. Lemma 8 also implies that it cannot

be S ⊆ Sk? . Thus, S is such that S 6⊆ Sk? and SB ∩ Sk? = ∅. Let k?? = min{k : SB ∩ Sk 6= ∅}

(note that k?? > k?). Let i ∈ SB. By definition of the set SB, the object ν(i) is unavailable for her
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at Step k??. Suppose ν(i) ∈ Ok′−1(i) \ Ok′(i), that is, it becomes unavailable for her at Step k′. Let

Step k be the first step at which for some agent in SB, her assigned object under ν becomes unavailable.

By definition, k < k??.

Case 1: Suppose a covered minimal self-mapped set T in the graph Gk−1 is selected at

Step k. Thus, Sk = N(T ) and the objects ω(N(T )) become unavailable for the agents in the set N \T .

Since, by definition, ν is such that each agent in S is assigned to an endowment of another agent in S,

and also T is a covered minimal self-mapped set,15 an agent i ∈ S ∩ N(T ) must be assigned to an

endowment of an agent in N \ N(T ). But then, since T is covered, by definition, Ok−1(i) ⊆ O(T )

and µ(i) ∈ Ok−1(i), and we have µ(i) Pi ν(i). This contradicts that S blocks µ.

Case 2: Suppose that Sk is a feasible improvement cycle in a minimal self-mapped set

which is not covered. By definition of the TDTC algorithm, the entitlement (Nk, εk) is feasible only

if ν(i) is assigned to one of the agents j ∈ Nk and, if the object ν(i) is assigned to agent i ∈ N \Nk,

agent j is worse off under ν than under µ. Thus, there is a cycle C including ν(i) and agent j. For each

agent i′ in C, let µ′ be such that µ′(i′) = o′, where o′ is the object she points to in cycle C. Note that,

by definition of the entitlement and the TDTC, o′ Ii′ µ(i′). Also, since, under ν, agent j cannot be

assigned to an object from the indifference set including object ν(i), by definition of ν, ν(j) = ω(j).16

Both S and cycle C include agent ω−1(ν(i)), thus they intersect. We claim that cycle C does contain

any agent in SB. (Note that agent i is not in the cycle C.) Let i′ ∈ SB ∩ C. In the graph Gk−1, each

agent points to her best available objects and for agent i′, the object ν(i′) is available at the beginning

of Step k, since by definition of k, it did not become unavailable before this step. Thus, agent i′ points

to her best available objects, that is object ν(i′) and other available objects indifferent to it, if any.

Since i′ ∈ C, by definition of the TDTC, it must be that ν(i′) Ii′ µ(i′), contradicting that i′ ∈ SB.

It can be that an agent in SB points to the endowment of an agent in C (agent i is such an agent

pointing to object ν(i)) but it cannot be that an agent in SB is also in C and points to an object,

which is the endowment of an agent not included in C (note that, by definition of SB, it can not point

to the endowment of an agent in C). Thus, C ∩ S ⊆ SI . Now consider ν and the coalition C. Each

agent in C ∩ S is indifferent between µ′ and ν and each other agent in C \ S is either indifferent
15That T is minimal self-mapped set implies that the endowment of an agent in N \N(T ) is not in T .
16See the the definition of blocking via an assignment in Section 3: when a coalition blocks an assignment, the resulting

assignment is such that, if a cycle defined by the original assignment is broken because of a departing coalition, any
agent in that cycle not included in the coalition gets her endowment.
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between µ′ and ν (because the coalition S does not break the cycle including that agent) or better off

under µ′ than under ν (there exists at least one such agent, agent j). Thus, C blocks ν via µ′ such

that µ′ ∈MC(µ).

III. Each outcome of the TTC is in the bargaining set. Let (ω,R) be an assignment problem

and let µ ∈ TTC(ω,R). First we show part (ii) of Definition 1. Let Tt 6= ∅ be the tth set of agents

who leave the mechanism after all the endowment updates take place after the t − 1st set of agents

leave the mechanism. Let Vt be the set of agents whose endowment has been updated after Tt−1 and

before Tt are removed. Note that for some j, Vj may be empty. Let TK be the last set of agents who

leave the mechanism. Thus N =
⋃K

j=0 Tj .

Suppose µ does not satisfy part (ii) of Definition 1. Then, there exists an S0 which blocks µ via

η0, for which there is no C(S0), with a non-empty intersection with S0, such that C(S0) blocks

η0 via some µ′ ∈MC(S0)(µ). Under this supposition, we show that S0 ∩
⋃K

j=0 Vj ∪ Tj = ∅, through an

induction argument. This will give us a contradiction since
⋃K

j=0 Vj ∪ Tj = N .

Induction Step t=1: S0 ∩ (V1 ∪T1) = ∅

First note that if V1 = ∅, then trivially S0 ∩ T1 = ∅, since otherwise an agent from S0 ∩ T1 would

get an object that is owned by some agent outside in S0 \ T1 which cannot be a top object for that

agent. Thus, S0 cannot block µ. Thus, consider the case where V1 6= ∅. Also note that by definition,

T1 ∩ V1 6= ∅, since otherwise T1 would be removed before the endowment update in V1, contradicting

with the definitions of V1 and T1.

Also, at this very first step, when V1 6= ∅, it must be T1 ⊆ V1. Otherwise, there would be an agent

a ∈ T1 \V1, who would not be part of the endowment update, but would get a top object and removed

at this first stage. This means a must be part of a minimal self-mapped set which is covered. This is a

contradiction since T1 ∩ V1 6= ∅ implies that one agent in T1 points to a maximal object that is owned

by some agent in V1, contradicting T1 being a covered minimal self-mapped set. Thus, V1 ∪ T1 = V1.

Now, suppose S0 ∩ (V1 ∪ T1) 6= ∅. That is, suppose S0 ∩ V1 6= ∅. Note that each agent in

V1 ∪ T1 receives a top object under µ, by Lemma 1. Thus, S0 * V1. Clearly, there is an agent in

S0 who is strictly better off under η0 than under µ, and this agent must be in S0 \ (V1 ∪ T1), that

is, S0 \ (V1 ∪ T1) 6= ∅. Now we show that C(S0) = V1 ∪ T1 blocks η0 via some µ′ ∈ MC(S0)(µ).

Consider the following allocation µ′ such that µ′(a) = µ(a) for each a ∈ T1 and µ′(a) = uV1(a) for
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each a ∈ V1 \ T1, where uV1(a) is the updated endowment of agent a at the end of the 1st update.

Clearly, µ′ ∈ MC(S0)(µ). No agent in C(S0) = V1 ∪ T1 is better off under η0 than under µ′, which is

because each agent in V1 ∪ T1 receives a top object under µ, thus under µ′. Thus, µ′Raη0 for each

a ∈ C(S0). Also note that ω(V1 ∪ T1) = µ′(V1 ∪ T1). If there is at least one agent in C(S0) who is

worse off under η0 than under µ, then C(S0) = V1∪T1 blocks η0 via µ′ ∈MC(S0)(µ), which contradicts

with our supposition that there is no such C(S0).

To see that there is at least one agent in C(S0) = V1 ∪ T1 who is worse off under η0 than under

µ, first note that since S0 blocks µ as a cycle and since S0 ∩ (V1 ∪ T1) 6= ∅, S0 intersects with one of

the cycles in V1 ∪ T1 = V1, say cycle C. In such an intersection, there is an agent a ∈ S0 who receives

an object under η0, say h, which is the original endowment of some agent in V1 ∩ S0. There is also

another agent â ∈ V1 (in V1 \ S0) for whom h is either her single top object or among her multiple

objects. Under µ this agent â gets an object that is either h or some other top object. Under η0 this

agent â gets her original endowment by the definition of blocking S0. Thus, if h Pâ ω(â), then â is

worse off under η0. If ω(â) is also a top object for â, then in the endowment update ω(â) will be the

new endowment of some other agent, say ã, and this agent will get ω(â), which is a top object for her.

Then, if for ã, ω(â) is a better object than her original endowment, ã would be worse off under η0 (see

Figure 2 below). If not, there would be another agent who would be worse off under η0. To see this,

suppose every agent in every cycle in V1 that intersects with S0 has her original endowment among

her top objects.17 Then, V1 ∪ S0 would Pareto dominate µ,18 contradicting Pareto efficiency of TTC

mechanism (see Figure 3 and 4 below).19 Thus, there is at least one agent in V1 who is worse off under

η0 than under µ, and C(S0) blocks η0 via some µ′ ∈ MC(S0)(µ), contradicting our supposition. Thus,

S0 ∩ (V1 ∪ T1) = ∅.

Induction Step t+1: If S0 ∩ (Vt ∪Tt) = ∅, then S0 ∩ (Vt+1 ∪Tt+1) = ∅:

Suppose S0 ∩ (Vt ∪ Tt) = ∅ for all t, and S0 ∩ (Vt+1 ∪ Tt+1) 6= ∅.

Case 1: S0 ⊆ (Vt+1 ∪ Tt+1) \
⋃t

j=0 Vj ∪ Tj . This is not possible since by Lemma 1, each agent in

Vt+1∪Tt+1 receives an object that is top among the remaining objects after Tt and µ(Tt) are removed.

If S0 ⊆ (Vt+1 ∪ Tt+1) \
⋃t

j=0 Vj ∪ Tj , then no agent in S0 is strictly better off under η0 than under µ.

17Except those in S0 ∩ V1.
18Note that the agents in those cycles in V1 that do not intersect with S0 receive, under η0, the same object they

receive under µ, by definition of blocking allocation η0.
19Pareto efficiency is shown in Saban and Sethuraman (2013)
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Figure 2: â’s original endowment is not one of her top objects.
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Figure 3: â’s original endowment is one of her top objects.

Case 2: S0 \ (Vt+1 ∪ Tt+1) 6= ∅. In this case, there is an agent a ∈ S0 \ (Vt+1 ∪ Tt+1) and another

agent â ∈ S0 ∩ (Vt+1 ∪ Tt+1). The agent â cannot be strictly better off under η0 than under µ. To see

this, suppose she is better off. By Lemma 1, she receives a top object among the remaining objects

after Tt is removed, since â ∈ Vt+1∪Tt+1. Thus, she must receive, under η0, an object that is allocated

(under µ) to some agent in Tt, say agent ã. Then, ã ∈ S0, since η0(S0) = w(S0), where w(S0) is the

set of original endowments of agents in S0. This contradicts S0 ∩ (Vt ∪ Tt) = ∅. Thus, each agent in

S0 ∩ (Vt+1 ∪ Tt+1) is indifferent between µ and η0. Thus, no agent in
⋃t+1

j=0 Vj ∪ Tj is strictly better off

under η0 than under µ.

Now, define C(S0) =
⋃t+1

j=0 Vj∪Tj . Note that S0∩C(S0) 6= ∅, by our supposition S0∩(Vt+1∪Tt+1) 6=

∅. And, S0 \ C(S0) 6= ∅ since we assumed S0 \ (Vt+1 ∪ Tt+1) 6= ∅. Also, C(S0) \ S0 6= ∅, since

S0 ∩ (Vt ∪ Tt) = ∅. Thus, C(S0) has a non-empty intersection with S0. Now, consider the allocation

µ′ such that µ′(a) = µ(a) for each a ∈
⋃t+1

j=0 Tj and µ′(a) = uVt+1(a) for each a ∈
⋃t+1

j=0 Vj \
⋃t+1

j=0 Tj ,
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Figure 4: For both â and ã original endowment is a top object.

where uVt+1(a) is the updated endowment of agent a at the end of the t + 1st update. No agent in

C(S0) =
⋃t+1

j=0 Vj ∪ Tj is strictly better off under η0 than under µ′. Thus, µ′ RC(S0) η. Also, note that

ω(
⋃t+1

j=0 Vj ∪ Tj) = µ′(
⋃t+1

j=0 Vj ∪ Tj). Now, if there is at least an agent in C(S0) who is worse off under

η0 than under µ, then C(S0) blocks η0 via µ′ ∈ MC(S0)(µ), which contradicts with our supposition

that there is no such C(S0).

To see that there is at least one agent in C(S0) =
⋃t+1

j=0 Vj ∪ Tj who is worse off under η0 than

under µ, we use the same argument we used above in the induction step t = 1. First note that since S0

blocks µ as a cycle and since S0 ∩ (Vt+1 ∪Tt+1) 6= ∅, S0 intersects with one of the cycles in Vt+1 ∪Tt+1,

say cycle C. In such an intersection, there is an agent a ∈ S0 who receives an object under η0, say

h, which is the original endowment of some agent in Vt+1 ∩ S0. There is also another agent â ∈ Vt+1

(in Vt+1 \ S0) for whom h is either her single top object or among her multiple objects. Under µ this

agent â gets an object that is either h or some other top object. Under η0 this agent â gets her original

endowment by the definition of blocking S0. Thus, if h Pâ ω(â), then â is worse off under η0. If ω(â) is

also a top object for â, then in the endowment update ω(â) will be the new endowment of some other

agent, say ã, and this agent will get ω(â), which is a top object for her. Then, if for ã, ω(â) is a better

object than her original endowment, ã would be worse off under η0. If not, there would be another

agent who would be worse off under η0. To see this, suppose every agent in every cycle in Vt+1 ∪ Tt+1

that intersects with S0 has her original endowment among her top objects. Then, (Vt+1 ∪ Tt+1) ∪ S0

would Pareto dominate µ, contradicting Pareto efficiency of the TTC mechanism. Thus, there is at

least one agent in Vt+1 ∪ Tt+1 who is worse off under η0 than under µ, and C(S0) blocks η0 via some

µ′ ∈MC(S0)(µ), contradicting our supposition. Thus, S0 ∩ (Vt+1 ∪ Tt+1) = ∅.
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Thus, S0 ∩ (Vt+1 ∪ Tt+1) = ∅. Induction argument implies that S0 ∩
⋃K

j=0 Vj ∪ Tj = ∅. This is a

contradiction since
⋃K

j=0 Vj ∪ Tj = N . Thus, our initial supposition must not hold, that is, µ satisfies

part (ii) of Definition 1.

Now, we show (i) of Definition 1: Suppose µ ∈ TTC(ω,R) is strictly blocked by some coalition S.

Then, all agents in S get a strictly better object within the coalition than under µ. S∩T0 = ∅, because

otherwise S cannot strictly block µ since all agents in T0 get a top object under µ. So there exits an

n ≥ 1 such that S ∩
⋃n−1

j=0 Tj = ∅ and S ∩ Tn 6= ∅. Now, consider the following two cases:

Case 1. No agent in
⋃n−1

j=0 Tj has an updated endowment (before Tn is removed) which is originally

endowed by some agent in S. Thus, the original endowment of any agent in S ∩ Tn is not removed

yet, before Tn is removed. Note that each agent in Tn, thus each agent in S ∩Tn, receives a top object

(under µ) among the remaining objects after
⋃k−1

j=0 Tj and µ(
⋃k−1

j=0 Tj) are removed. Note also that

each agent in S, thus those in S ∩ Tn, receives an object (under µ′) which is an original endowment of

some agent in S, since S is a coalition. Thus, for an agent i ∈ S ∩ Tn, µ′(i) Pi µ(i) is not possible.

Case 2. There is an agent in
⋃n−1

j=0 Tj who has an updated endowment (before Tn is removed)

which is originally endowed by some agent in S. Denote the set of such agents by Ŝ. By Lemma 2, each

agent in Ŝ receives a top object (under µ) among the remaining objects after
⋃n−1

j=0 Tj and µ(
⋃n−1

j=0 Tj)

are removed. Since the coalition S via µ′ creates a cycle, there is an agent i ∈ Ŝ who receives an object

(under µ′) which is the original endowment of some agent j ∈ S \ Ŝ. By the definition of Ŝ, agent j’s

original endowment is among the remaining objects after
⋃n−1

j=0 Tj and µ(
⋃n−1

j=0 Tj) are removed. Since

agent i receives (under µ) a top object among the remaining ones after
⋃n−1

j=0 Tj and µ(
⋃n−1

j=0 Tj) are

removed, µ′(i) Pi µ(i) is not possible.

IV. For each outcome µ of the TDTC, there exists a selection rule F such that µ is

obtained by the TTC via F . In the first step of the TDTC, a cycle is chosen and each agent in the

cycle is entitled one of her best objects. The TTC obtains the same welfare level for these agents by

top-trading of the chosen cycle. Suppose, by an inductive argument, that at Step k−1, the entitlement

given by the TDTC is obtained by a sequence of top trading cycles: the TTC gives an endowment

profile such that, given the entitlement (Nk−1, εk−1) obtained by the TDTC, for each i ∈ Nk−1, her

endowment at Step k − 1, that is, ωk−1(i), is in the set εk−1(i). Let Nk be the feasible improvement

cycle chosen by the TDTC at Step k. By definition of a feasible improvement cycle (see Section 5), there
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exists an individually rational matching µ such that the entitlement (Nk−1, εk−1) is feasible under µ

and each agent in Nk is assigned one of the objects she points to. Suppose the sets Nk and Nk−1

are disjoint. Since Nk is a feasible improvement cycle in the graph Gk−1 and does not include any

agent, whose endowment is updated, by top-trading Nk, the inductive hypothesis is satisfied. Suppose

now that the intersection of Nk−1 and Nk is non-empty. Suppose that all the matchings such the

entitlement (Nk−1, εk−1) is feasible under µ and each agent in Nk is assigned one of the objects she

points to, induce the same set of cycles including the agents in Nk−1. Then, the set Nk must be in this

set of cycles, since otherwise by selecting Nk in this step would violate the existing entitlement, thus a

contradiction that Nk is a feasible improvement cycle. Since the updated endowments of Nk−1 are in

this set of cycles, by making each agent in Nk−1 ∪ Nk point to the object that she is assigned to under

this set of cycles, and each object point to its updated owner in Nk−1, we obtain a sequence top-trading

cycles and the update after top-trading this sequence gives the inductive hypothesis. Suppose that the

matchings such the entitlement (Nk−1, εk−1) is feasible under µ and each agent in Nk is assigned one

of the objects she points to, do not induce the same set of cycles including the agents in Nk−1. But,

after a number of steps, say at Step k′, since the problem is finite, they should induce only one set of

cycles including Nk−1. At that step, the same argument above applies. The only question remains is

that whether one can change the ordering of the selection of the feasible improvement cycles in the

TDTC, to achieve the same matching. While the answer is clearly negative in general, it is affirmative

as long as the same entitlements are created. Since the same entitlements are created when a feasible

improvement cycle is chosen at Step k′ or at Step k, the feasible improvement cycles chosen between

steps k and k′ are not affected by this change in the order of selection. Thus, the inductive hypothesis

is satisfied in this case as well.
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