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Abstract

For probabilistic assignment of objects, when only ordinal preference information

is available, we introduce an efficiency criterion based on the following domina-

tion relation: a probabilistic assignment dominates another assignment if, when-

ever the latter assignment is ex-ante efficient at a utility profile consistent with

the ordinal preferences, the former assignment is ex-ante efficient too; and there

is a utility profile consistent with the ordinal preferences at which the latter as-

signment is not ex-ante efficient but the former assignment is ex-ante efficient.

We provide a simple characterization of this domination relation. We revisit an

extensively studied assignment mechanism, the Probabilistic Serial mechanism

(Bogomolnaia and Moulin [2]), which always chooses a “fair” assignment. We

show that the Probabilistic Serial assignment may be dominated by another fair

assignment. We provide an almost full characterization of the preference profiles
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at which the serial assignment is undominated among fair assignments.

JEL Classification Numbers: C60, C71, C78, D61

Keywords: Ex-ante efficiency, probabilistic assignment, fairness, probabilistic se-

rial mechanism.

1 Introduction

We study the assignment problem in which n objects are to be allocated among n

agents such that each agent receives an object and monetary compensations are not

possible. Applications include assigning houses to agents or students to schools. Moti-

vated by fairness concerns, probabilistic assignments (lotteries over sure assignments)

have been extensively studied in the literature.

Starting with the seminal study by Hylland and Zeckhauser [7], the vast majority

of the literature assumes that each agent derives a utility for being assigned an object,

and his ex-ante evaluation of a probabilistic assignment is his expected utility for that

probabilistic assignment. In other words, agents are endowed with von-Neumann–

Morgenstern (vNM) preferences over probabilistic assignments. In this setup, a nat-

ural efficiency requirement for a probabilistic assignment is ex-ante efficiency: the

probabilistic assignment maximizes the sum of the expected utilities. Obviously, eval-

uating the ex-ante efficiency of a probabilistic assignment requires knowledge of the

vNM preferences. However, ordinal allocation mechanisms that elicit only prefer-

ences over sure objects have been particularly studied in the literature.1 When an

ordinal mechanism is used, agents are asked to report their preference orderings over

objects.2 Therefore, the efficiency of an assignment has to be evaluated based only on

the ordinal preference information. In this ordinal environment, we propose the fol-

lowing efficiency criterion: a probabilistic assignment dominates another assignment

in social welfare terms, or sw-dominates, if

i. whenever the latter assignment is ex-ante efficient at a utility profile consistent
1See Bogomolnaia and Moulin [2] for several justifications for observing ordinal mechanisms in

practice.
2Part of the literature focuses on strict preferences such that each agent reports a complete, transi-

tive, and anti-symmetric ordering over objects. Unless otherwise noted, we allow for weak preferences
that are not necessarily anti-symmetric.
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with the ordinal preferences, the former assignment is ex-ante efficient too; and

ii. there is a utility profile consistent with the ordinal preferences at which the

latter assignment is not ex-ante efficient but the former assignment is ex-ante

efficient.

Although our dominance notion is based on all possible utility representations of the

ordinal preferences, it does not require any knowledge of the particular utilities. We

call an assignment sw-efficient if it is not dominated in social welfare terms.

The common method in the literature to ordinally evaluate the efficiency of a

probabilistic assignment is based on first order stochastic dominance. This efficiency

notion, introduced by Bogomolnaia and Moulin [2], is called sd-efficiency: a prob-

abilistic assignment is sd-efficient if it is not stochastically dominated by any other

assignment.3 McLennan [10] shows that an assignment is sd-efficient if and only if

there is a utility profile at which it is ex-ante efficient, which readily implies that any

sd-efficient assignment sw-dominates any assignment that is not sd-efficient. Here,

we show that sw-domination induces a clean ranking of sd-efficient assignments. This

clean ranking enables us to welfare-wise compare the well-known assignment mecha-

nisms such as random priority and probabilistic serial assignment mechanisms, which

are incomparable according to sd-domination.

We show that if preferences are strict (no agent is indifferent between two dif-

ferent objects), an sd-efficient assignment π sw-dominates another sd-efficient as-

signment π′ if and only if π has a finer support, i.e. the set of agent-object pairs

assigned with positive probability in π is a proper subset of the set of agent-object

pairs assigned with positive probability in π′. If preferences are weak (indifference

is allowed), we extend the support of an assignment so that it possibly includes an

agent-object pair that are not assigned with positive probability, provided there is an

“equivalent assignment” that includes the pair in its support. Then, we show that an

sd-efficient assignment π sw-dominates another sd-efficient assignment π′ if and only

if π has a finer extended support. A consequence of these results is that when prefer-

ences are strict, the only sw-efficient assignments are the Pareto efficient deterministic

assignments; and when preferences are weak, the only undominated assignments are

3Bogomolnaia and Moulin [2] refers to sd-efficiency as “ordinal efficiency.” Here, we use the termi-
nology of Thomson [11].
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the sd-efficient assignments in which each agent is indifferent among the objects that

he is assigned with positive probability.

Our analysis shows that each sw-efficient assignment is essentially deterministic.

This observation indicates a trade-off between fairness and efficiency, since the main

motivation for probabilistic assignments is fairness. Put differently, in a setting where

randomization is required to establish fairness, the best policy in terms of social wel-

fare efficiency is to establish fairness with a minimum amount of randomization.

To prove Theorem 1 we use the consequences of a result by McLennan [10] and

its constructive proof by Manea [9], which together show that for each sd-efficient

assignment, a utility profile consistent with the ordinal preferences can be constructed

at which the assignment is ex-ante efficient. Here, we are able to describe the general

structure of the set of utility profiles at which a given assignment is ex-ante efficient.4

In the second part of the paper, we revisit an extensively studied probabilistic as-

signment mechanism, namely the Probabilistic Serial (PS) mechanism. Bogomolnaia

and Moulin [2] introduce the PS mechanism and show that it always chooses a fair

and sd-efficient assignment.5 We observe that, without sacrificing fairness, the PS
mechanism can be improved in sw-efficiency. Given this observation, an important

question is “When is it possible to have a fair assignment that sw-dominates the serial

assignment?”. To answer this question, we consider a directed graph, the configura-

tion of which depends on the given ordinal preference profile. We show that a special

connectedness property of this graph plays a critical role in understanding at which

preference profiles the serial assignment is sw-efficient among fair assignments.

2 The framework

Let N be a set of n agents and A be a set of n objects. For each i ∈ N , the preference

relation of i, which we denote by Ri, is a weak order on A, i.e. it is transitive and

complete. Let Pi denote the associated strict preference relation and Ii the associated

indifference relation. Let Ri denote the set of all possible preference relations for

4For example, it follows from the proof of Theorem 1 that for two sd-efficient probabilistic assign-
ments the set of utility profiles at which each assignment is ex-ante efficient are the same if and only
if the agent-object pairs assigned with positive probability in these two assignments are the same.

5See Section 4 for the formal definition of fairness.
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i, and R ≡ ×i∈NRi denote the set of all possible preference profiles, which we also

call the weak preference domain. Let RS
i ⊂ Ri denote the set of all possible strict

preference relations for i, i.e. the set of all anti-symmetric preference relations in Ri,

and RS ≡ ×i∈NRS
i denote the set of all possible strict preference profiles, which we

also call the strict preference domain.

A deterministic assignment is a one-to-one function fromN toA. A deterministic

assignment can be represented by an n × n matrix with rows indexed by agents and

columns indexed by objects, and having entries in {0, 1} such that each row and each

column has exactly one 1. Such a matrix is called a permutation matrix. For each

(i, a) ∈ N ×A, having 1 in the (i, a) entry indicates that i is assigned a. A probabilistic

assignment (an assignment hereafter) is a probability distribution over deterministic

assignments. An assignment can be represented by an n × n matrix having entries

in [0, 1] such that the sum of the entries in each row and each column is 1. Such a

matrix is called a doubly stochastic matrix. For each assignment π, and each pair

(i, a) ∈ N × A, the entry πia, which we also write as πi(a) or π(i, a), indicates the

probability that i is assigned to a at π. Since each doubly stochastic matrix can be

represented as a convex combination of permutation matrices (Birkhoff [1] and von

Neumann [12]), the set of all doubly stochastic matrices is the set of all assignments.

Let Π be the set of all doubly stochastic matrices.

We denote the collection of all lotteries over A by L(A). For each i ∈ N , a von-

Neumann–Morgenstern (vNM) utility function ui is a real valued mapping on A, i.e.

ui : A → R. For each i ∈ N with preferences Ri ∈ Ri, a vNM utility function ui is

consistent with Ri if for each pair (a, b) ∈ A, we have ui(a) ≥ ui(b) if and only if

a Ri b. We obtain the corresponding preferences of i over L(A) by comparing the

expected utilities, where the expected utility from πi ∈ L(A) is
∑

a∈A πi(a)ui(a).

Next, we define the sd-efficiency of an assignment. The formulation of sd-efficiency

is independent of any vNM utility specification consistent with the ordinal prefer-

ences. Let π, π′ ∈ Π, i ∈ N , and R ∈ R. We say that πi stochastically dominates π′i at

Ri, or simply πi sd-dominates π′i at Ri, if for each a ∈ A,∑
b:bRia

πi(b) ≥
∑
b:bRia

π′i(b).

We say that π stochastically dominates π′ at R, or simply π sd-dominates π′ at R,
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if π 6= π′ and for each i ∈ N , πi sd-dominates π′i at Ri. An assignment π ∈ Π is

sd-efficient at R if no assignment sd-dominates π at R. Let P sd(R) denote the set of

sd-efficient assignments at R.

3 SW-domination and a characterization

For each utility profile u = (ui(.))i∈N and assignment π, the ex-ante social welfare at

(u, π) is the sum of the expected utilities of the agents, that is:

SW (u, π) =
∑

(i,a)∈N×A

πi(a)ui(a).

An assignment π is utilitarian efficient at a utility profile u if it maximizes the

social welfare at u, i.e. π ∈ arg maxπ′∈Π SW (u, π′).

Let π, π′ ∈ Π and R ∈ R. An assignment π dominates π′ in social welfare terms at

R, or simply π sw-dominates π′ at R if

i. for each utility profile u consistent with R, if π′ is ex-ante efficient at u, then π

is ex-ante efficient at u too, and

ii. there is a utility profile u consistent with R at which π is ex-ante efficient but π′

is not ex-ante efficient.

An assignment π is sw-efficient atR if there is no assignment π′ that sw-dominates

π at R. For each π, π′ ∈ Π, π and π′ are equivalent in social welfare terms at R, or

simply π and π′ are sw-equivalent at R if for each utility profile u consistent with R,

π is ex-ante efficient at u if and only if π′ is ex-ante efficient at u. An assignment π

weakly dominates π′ in social welfare terms at R, or simply π weakly sw-dominates

π′ at R if π sw-dominates π′ or π and π′ are sw-equivalent at R. An assignment π is

strongly sw-efficient at R if there is no assignment π′ that weakly sw-dominates π at

R.

Although the sw-domination notion is based on all possible utility representa-

tions of the preferences, it does not require any knowledge of the particular utilities.

Hence, knowing ordinal preferences suffice for the comparison. However, since there
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would be a huge collection of utility profiles consistent with any given ordinal pref-

erence profile, this comparison can be computationally burdensome. Therefore, it

may not be clear which assignments are sw-efficient. In what follows, we provide

a characterization of sw-domination. From the characterization, it follows that sw-

efficiency implies sd-efficiency. Moreover, a simple relation among sd-efficient assign-

ments identifies whether one of these assignments sw-dominates the other.

First, we introduce some notation. For each π ∈ Π, we refer to the collection of

pairs (i, a) ∈ N × A with πi(a) > 0 as the support of π, denoted by Sp(π). For each

π, π′ ∈ Π, Sp(π) ( Sp(π′) means that for each pair (i, a) ∈ N × A, if πi(a) > 0 then

π′i(a) > 0, and there is a pair (i, a) ∈ N × A such that πi(a) = 0, but π′i(a) > 0.

The support notion will be critical in characterizing sw-domination on the strict

preference domain. For a characterization on the weak preference domain, an exten-

sion of the support notion will be critical. The following relation on (π,R), denoted

by ∼(π,R), will be helpful to define the extension. For each (i, a), (j, b) ∈ N × A,

(i, a) ∼(π,R) (j, b) if and only if πi(b) > 0 and a Ii b.

Note that if (i, a) ∼(π,R) (j, b), then for each k ∈ N , (i, a) ∼(π,R) (k, b). A cycle

at ∼(π,R) is a sequence of pairs (not necessarily distinct) (i1, a1), (i2, a2), . . . , (ik, ak) ∈
N × A such that (i1, a1) ∼(π,R) (i2, a2) ∼(π,R) . . . ∼(π,R) (ik, ak) ∼(π,R) (i1, a1).

Let R be a preference profile and π be an assignment. A pair (i, a) ∈ N × A is in

the extended support of π relative to R, denoted by (i, a) ∈ ExtSp(π,R), if there is

a cycle of ∼(π,R) that contains (i, a). To get some intuition, imagine that (i, a) /∈ Sp(π)

and we trade a small probability along the cycle such that i1 gets less of a2 and more

of a1, i2 gets less of a3 and more of a2, and so on. Note that in the new assignment,

each agent’s expected utility is the same as before; moreover, (i, a) is now included

in the support. In a sense, although (i, a) is not included in the support π, it is

included in the support of an equivalent assignment. Also observe that, in order to

have (i, a) ∈ ExtSp(π,R) \ Sp(π), there must be an object b ∈ A such that a Ii b,

πi(b) > 0. The following example illustrates the support and the extended support of

an assignment.

Example 1. Let N = {1, 2, 3} and A = {a, b, c}. Let R ∈ R and π ∈ Π be as depicted
below. Note, for instance, that agent 1 is indifferent between a and b, he prefers a or b to
c, and he is assigned b for sure at assignment π.
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R1 R2 R3 π a b c
a, b a a, c 1 0 1 0
c b, c b 2 0.4 0 0.6

3 0.6 0 0.4

Figure 1: The extended support of π is ExtSp(π,R) = {(1, a), (1, b), (2, a), (2, b), (2, c), (3, a), (3, c)}.

Note that Sp(π) = {(1, b), (2, a), (2, c), (3, a), (3, c)}. Observe that (1, a) ∼(π,R) (2, b) ∼(π,R)

(3, c) ∼(π,R) (1, a) is a cycle of ∼(π,R). Therefore, we have (1, a), (2, b) ∈ ExtSp(π,R).
Note that (3, b) /∈ ExtSp(π,R) since there is no b′ ∈ A such that b I3 b

′, πi(b′) > 0. Thus,
ExtSp(π,R) = {(1, a), (1, b), (2, a), (2, b), (2, c), (3, a), (3, c)}.

Next, we present a characterization of sw-domination.

Theorem 1. Let π, π′ ∈ Π and R ∈ R. The assignment π sw-dominates π′ at R if and
only if

i. π′ /∈ P sd(R) and π ∈ P sd(R), or

ii. π′ ∈ P sd(R) and ExtSp(π,R) ( ExtSp(π′, R).

Proof. See section 6.1.6

As a corollary to Theorem 1, for the strict and the weak preference domains we

identify all the assignments that are sw-efficient.

Corollary 1. i. Let R ∈ R. An sd-efficient assignment π is sw-equivalent to another
sd-efficient assignment π′ at R if and only if ExtSp(π) = ExtSp(π′).

ii. Let R ∈ RS. An sd-efficient assignment π sw-dominates another sd-efficient as-
signment π′ at R if and only if Sp(π) ( Sp(π′); and π is sw-equivalent to π′ at R
if and only if Sp(π) = Sp(π′).

iii. Let R ∈ RS. An assignment π is sw-efficient at R if and only if it is a Pareto
efficient deterministic assignment at R.

6As for the extension to two-sided markets, one can show that the counterpart of Theorem 1 holds
for the marriage problem by using the utility profile construction in Dogan and Yildiz [4] vis à vis the
use of Manea’s construction for the current result.
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iv. Let R ∈ R. An assignment π is sw-efficient at R if and only if π is sd-efficient
at R and each agent is indifferent between the objects he is assigned with positive
probability at π.

Proof. See Section 6.2.

Since the main motivation for probabilistic assignments is fairness, Corollary 1 in-

dicates a contrast between fairness and efficiency. Think of any setting where random-

ization is required to establish fairness. It follows from our result that the best policy

in terms of social welfare efficiency would be to establish fairness with a minimum

amount of randomization. For some problems, the contrast between sw-efficiency and

fairness may be extreme, in that the only fair assignments are the least sw-efficient

ones from among the sd-efficient assignments. For example, when agents have the

same preferences, each one of the two well-known fairness requirements for proba-

bilistic assignments, namely sd-no-envy and equal treatment of equals, pins down a

unique assignment: agents share each object equally. Note that this assignment is a

least sw-efficient assignment of sd-efficient ones, since it has full support.

4 SW-efficiency of the Probabilistic Serial Mechanism

An assignment mechanism is a function ϕ : R → Π, associating an assignment with

each preference profile. On the strict preference domain, a widely studied probabilis-

tic assignment mechanism is the probabilistic serial (PS) mechanism. At each R ∈ RS,

the PS assignment is computed by the following algorithm. Consider each object as

an infinitely divisible good with a one unit supply that will be eaten by agents in the

time interval [0, 1] through the following steps:

Step 1: Each agent eats from his most preferred object. Agents eat at the same

speed. When an object is completely eaten, proceed to the next step.

Steps s ≥ 2: Each agent eats from his most preferred object from among the ones

that have not yet been completely eaten. Agents eat at the same speed. When an

object is completely eaten, proceed to the next step.

The algorithm terminates when all the objects are exhausted (or equivalently

when each agent has eaten in total exactly one unit of objects), and the probabil-
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ity that an agent receives an object in the PS assignment is defined as the amount of

the object the agent has eaten. We denote the PS assignment at R by πps(R).

Given R ∈ RS, a ∈ A, and t ∈ [0, 1], we say that a is exhausted at time t in the

PS algorithm at R if at the end of the step that ends when a is completely eaten, each

agent has eaten in total t units of the objects. Note that for each pair a, b ∈ A, if a

and b are exhausted at different times in the PS algorithm at R, then for each i, j ∈ N
with πps(i, a) > 0 and πps(j, b) > 0, we have πps(i, {c ∈ A : c Ri a}) 6= πps(j, {c ∈ A :

c Rj b}).
Bogomolnaia and Moulin [2] show that the PS mechanism chooses an sd-efficient

assignment at each strict preference profile. Another well-known probabilistic assign-

ment mechanism is the random priority (RP) mechanism, which draws at random an

ordering of the agents from the uniform distribution, then lets them choose succes-

sively their best remaining object (the first agent in the ordering is assigned to his

best object, the second agent to his best among the remaining objects, and so on).

Bogomolnaia and Moulin [2] show that although RP mechanism does not always

choose an sd-efficient assignment, there are preference profiles at which RP and PS
mechanisms choose different assignments such that neither sd-dominates the other.

It follows from Corollary 1 that at each preference profile the PS assignment weakly

sw-dominates the RP assignment. To see this, consider any R ∈ RS, if the RP assign-

ment is not sd-efficient atR, then the PS assignment sw-dominates the RP assignment.

Suppose that both assignments are sd-efficient at R. Since the RP assignment chooses

each Pareto efficient deterministic assignment with a positive probability, the RP as-

signment has the largest support among the ex-post efficient assignments. Then, each

agent-object pair that is assigned with a positive probability in the PS assignment at

R is also assigned with a positive probability in the RP assignment at R. Hence, the

PS assignment either sw-dominates or is sw-equivalent to the RP assignment at R.

More generally, it follows that any ex-post efficient assignment weakly sw-dominates

the RP assignment at any preference profile.

Besides sd-efficiency, the PS mechanism also satisfies sd–envy-freeness (Bogomol-

naia and Moulin [2]), which has been a central fairness requirement in the proba-

bilistic assignment literature: an assignment π is sd–envy-free at R if for each pair of

agents i, j ∈ N , πi sd-dominates πj at Ri. However, it follows from Corollary 1 that

the PS mechanism is not sw-efficient, since there are preference profiles at which PS
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mechanism does not choose a deterministic assignment. One natural question is the

following: Given R ∈ RS, is the PS assignment sw-efficient in the class of sd-envy-free
assignments at R? Our next example shows that there is a strict preference profile for

which there is an sd–envy-free assignment that sw-dominates the PS assignment and

is not sw-dominated by any other sd–envy-free assignment.

Example 2. Let N = {1, 2, 3} and A = {a, b, c}. Consider the following preference
profile.

R1 R2 R3 πps(R) a b c π a b c
a a b 1 1

2
1
4

1
4

1 1
2

1
2

0
b c c 2 1

2
0 1

2
2 1

2
0 1

2

c b a 3 0 3
4

1
4

3 0 1
2

1
2

Figure 2: The assignment π, which is sd-envy-free at R, sw-dominates PS(R) at R, since Sp(π) ( Sp(πps(R)).

Consider the PS assignment πps(R) and an alternative assignment, namely π, both
of which are depicted above. Note that π has a finer support. Then, by Theorem 1, π
sw-dominates πps(R). Also, it is easy to check that π is sd–envy-free, and any assignment
that has a finer support cannot be sd–envy-free.

Now, when is it possible to have an sd–envy-free assignment that sw-dominates

the PS assignment? To answer this question, given R ∈ RS, we define a directed

graph G(R) as follows:

Definition. For each R ∈ RS, G(R) is a directed graph where each agent-object pair

is a vertex and for each vertex pair (i, a), (j, b), there is an edge from (i, a) to (j, b),

denoted by (i, a) → (j, b), if for each pair of objects x, y ∈ A such that x Ri a with

πps(i, x) > 0 and b Pj y with πps(j, y) > 0, we have x Pj y.

Note that one can identify the configuration of G(R) directly from the preference

profile R. By Lemma 4 in Section 6.4 we show that for each a ∈ A, (i, a) → (j, a)

indicates that if we increase the probability that a is assigned to i in the PS assignment,

then j will envy i. We observe that a special connectedness property of this graph

plays a critical role in understanding when the PS assignment is strongly sw-efficient

among the sd–envy-free assignments. In graph theoretic language, a vertex (i, a) is
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said to be connected to to another vertex (j, b) in G(R) if there is a path, a sequence

of vertices v1, v2, . . . , vk such that (i, a) → v1 → v2 → · · · vk → (j, b). Next, we

introduce the connectedness property that will be key for our results.

Definition. Let R ∈ RS and a ∈ A. The graph G(R) is a-connected if for each

i, j ∈ N such that πps(R)(i, a) > 0, (i, a) is connected to (j, a) in G(R). The graph

G(R) is connected if it is a-connected for each a ∈ A.

As an illustrative example, consider the following two extreme preference profiles:

Suppose that in the first profile each agent has the same preference relation, whereas

in the second profile each agent top-ranks a distinct alternative. The PS assignment

allocates each object equally between the agents at the first preference profile, and

assigns each agent his top choice with probability one at the second preference profile.

In both preference profiles, G(R) is connected since for each a ∈ A and i, j ∈ N with

πps(i, a) > 0, we have (i, a)→ (j, a). More specifically, for the first preference profile,

where the preferences are exactly the same, observe that for each a ∈ A, if we restrict

G(R) to the vertex set N×{a}we obtain the complete graph. Similarly, for the second

preference profile, for each a ∈ A, since there is a single agent i ∈ N with π(i, a) > 0,

if we restrict G(R) to the vertex set N × {a}, then we obtain a star-shaped directed

graph. Moreover, clearly at both preference profiles, the PS assignment is the unique

sd-efficient and sd–envy-free assignment. In fact, we next show that connectedness

of G(R) is sufficient for the PS assignment to be strongly sw-efficient among the sd–

envy-free assignments at R.

Proposition 1. Let R ∈ RS. If G(R) is connected, then the PS assignment is strongly
sw-efficient among the sd–envy-free assignments.

Proof. See Section 6.3.

Next, we introduce a property which turns out to be critical in understanding

when connectedness is necessary for the PS assignment to be strongly sw-efficient

among the sd–envy-free assignments.

Definition. A preference profile R ∈ RS satisfies betweenness if for each pair a, b ∈
A that are simultaneously exhausted in the PS algorithm at R and for each i ∈ N

with πps(i, a) > 0, there exists c ∈ A such that πps(i, c) > 0 and a Pi c Pi b.
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Note that the betweenness of a preference profile can be directly and easily verified

by the PS assignment. Moreover, it directly follows from the definition of between-

ness that for each preference profile R ∈ RS, if for each distinct a, b ∈ A, a and b are

exhausted at different times in the PS algorithm, then R satisfies betweenness.7 The

next result shows that if a preference profile R satisfies betweenness, then connect-

edness of G(R) is necessary for the PS assignment to be strongly sw-efficient among

the sd–envy-free assignments.

Proposition 2. Let R ∈ RS satisfy betweenness. If the PS assignment is strongly sw-
efficient among the sd–envy-free assignments, then G(R) is connected.

Proof. See Section 6.4.

Next example shows that in the absence of betweenness, although the PS assign-

ment is sw-efficient among sd–envy-free assignments, G(R) may not be connected.

Example 3. Let N = {1, 2, 3, 4} and A = {a, b, c, d}. Consider the following preference
profile.

R1 R2 R3 R4 πps(R) a b c d
a a b c 1 1

2
1
4

0 1
4

b c c a 2 1
2

0 1
4

1
4

c d d d 3 0 3
4

0 1
4

d b a b 4 0 0 3
4

1
4

First note that objects b and c are exhausted simultaneously at time 3/4. Since agent
1 ranks c right below b, R violates betweeness. Next, we argue that there is no path that
connects the pair (1, b) to (3, b). To see this, first note that only (4, c) is linked to (3, b)

and only (2, c) and (2, a) are linked to (4, c). Similarly, note that only (1, a) is linked to
(2, a) and (2, c). Since (1, b) is not linked to (1, a), (2, c), (4, c) or (3, b), there is no path
that connects (1, b) to (3, b). Finally we argue that πps(R) is the unique assignment that
is sd–envy free and sd-efficient at R. To see this, first note that at any sd–envy-free and
sd-efficient assignment at R, a should be shared evenly between agents 1 and 2. Given
this, to be sd-efficient 2 and 4 should eat from c. Now, for agent 4 not to envy agent

7As a special case, whenever each agent-object pair is matched with positive probability, the distinct
exhaustion condition is satisfied.
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2, 4 should eat 3/4 of c. Since 1 and 3 rank b over d, 2 and 4 should complete their
assignments by equally eating from d. Thus assignments of agents 2 and 4 should be
as in πps(R). Next consider the assignment of agent 3. Since a and c are exhausted,
3 can eat from b and d, let p be the amount of b that 3 eats. Now, note that the only
value of p that makes 1 and 3 not to envy each other is 3/4. It follows that πps(R) is the
unique sd-efficient among sd–envy-free assignments. Thus we show that in the absence of
betweenness, although PS assignment is sw-efficient among sd–envy-free assignments,
G(R) may not be connected.

Once we identify when is it possible to sw-dominate the PS assignment without

sacrificing sd–envy-freeness, the next question is how to obtain such an assignment.

The construction in the proof of Proposition 2 implicitly answers this question. Now,

we revisit Example 3 to give a rough overview of how can we use this construction

to obtain an sd–envy-free assignment that sw-dominates the PS assignment. First,

consider the preference profile R and πps(R). One can easily check that each object

is exhausted at different times in πps(R). Next, consider the graph G(R). Note that if

for each x ∈ A, we restrict the G(R) to the vertex set N × {x}, we obtain the three

graphs below. It directly follows from their configuration that G(R) is a-connected

and c-connected. However, G(R) is not b-connected, since (1, b) is not connected to

(3, b). To see this, first note that neither (1, b) nor (2, b) is linked to (3, b). Moreover,

since only agent 3 top-ranks b and is assigned to c with positive probability, there is

no (i, x) ∈ N × {a, c} with (i, x)→ (3, b).

(2, a)

(1, a)

(3, a) (2, b)

(1, b)

(3, b) (3, c)

(1, c)

(2, c)

Now, since (1, b) is not connected to (3, b), we can transfer some amount of b from

3 to 1 without violating sd–envy-freeness. Let us transfer the assignment of b from 3

to 1 until any additional transfer makes 3 to envy 1. This way we can transfer one-

quarter the probability of b from 3 to 1. Hence agent 1’s assignment is finalized, and

we can add the c share of agent 1 in πps(R) to the c assignment of agent 3. Thus, we
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obtain the assignment π in Example 3, which is sd–envy-free and sw-dominates the

PS assignment.

Our results in this section are related to a strand of literature that aims to answer at

which preference profiles PS assignment is the unique sd–envy-free and sd-efficient

assignment.8 It follows from our Proposition 2 and Corollary 1 that connectedness of

G(R) is sufficient for the PS assignment being unique sd–envy-free and sd-efficient

assignment among assignments which assign an agent-object pair a positive probabil-

ity only if the PS assignment assigns a positive probability to that pair. On the other

hand, for arbitrary preference profiles, a necessary condition follows from the proof of

our Proposition 2 in that if PS assignment is the unique sd-efficient and sd–envy-free

assignment at a preference profile R, then G(R) must be connected.9

5 Conclusion

We propose the notion of social welfare efficiency and show that the previous results

can be used to obtain a clean ranking of sd-efficient assignments in terms of this new

efficiency notion. This clean ranking enables us to welfare-wise compare the well-

known assignment mechanisms such as the random priority and the probabilistic

serial assignment mechanisms, which are incomparable according to sd-domination.

Our analysis in the first part of the paper shows that each sw-efficient assignment

is essentially deterministic, indicating a trade-off between fairness and efficiency. In

the second part of the paper, we focus on the probabilistic serial assignment. We

question at which preference profiles the probabilistic serial assignment is sw-efficient

among fair assignments. In Propositions 1 and 2, we show that connectedness of a

directed graph induced by the preference profile provides an almost full answer to

this question.

8Heo [6] and Cho [3] provide different sufficient conditions that are not necessary for the unique-
ness of the PS assignment.

9In the proof of our Proposition 2 for each preference profile R such that G(R) is not connected,
we construct an assignment that is sd–envy-free, sd-efficient and different from the PS assignment. We
use betweenness condition to additionally show that the constructed assignment weakly sd-dominates
the PS assignment.
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6 Appendix

6.1 Proof of Theorem 1

The following lemma, which easily follows from results in Manea [9], plays a central

role for the necessity part of our result. Lemma 1 states that for each assignment π

that is sd-efficient at R, there is a utility profile u consistent with R such that for each

object a and agents i, j,

i. if (i, a) ∈ ExtSp(π,R) and (j, a) ∈ ExtSp(π,R), then ui(a) = uj(a)

ii. if (i, a) ∈ ExtSp(π,R) and (j, a) /∈ ExtSp(π,R), then ui(a) > uj(a).

In other words, there is a utility profile and a “common” utility function v : A→ R
such that if (i, a) ∈ ExtSp(π,R), then ui(a) = v(a); and if (i, a) /∈ ExtSp(π,R), then

ui(a) < v(a).

Lemma 1. Let R ∈ R. If π ∈ Π is sd-efficient at R, then there exist a utility profile u
consistent with R and a function v : A→ R such that for each (i, a) ∈ N × A,

i. if (i, a) ∈ ExtSp(π,R), then ui(a) = v(a), and

ii. if (i, a) /∈ ExtSp(π,R), then ui(a) < v(a).

Proof. Let R ∈ R. Suppose that π ∈ Π is sd-efficient at R. The existence of u and

v with the desired properties will easily follow from the way the utility profile is

constructed in Manea [9]. For the sake of completeness, we first need to introduce

the notation and the results that we need from Manea [9]. Consider the following

binary relations on A:

i. a . b iff there is i ∈ N such that a Pi b and πi(b) > 0.

ii. a ./ b iff a 7 b and there is i ∈ N such that a Ii b and πi(b) > 0.

iii. aD b iff a . b or a ./ b.
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iv. a , b iff there is a sequence of objects a1, . . . , ak (with possibly repeated terms)

such that a1 ./ a2 ./ . . . ./ ak ./ a1 with a, b ∈ {a1, . . . , ak}.10 Note that , is an

equivalence relation (reflexive, symmetric, transitive). For each a ∈ A, let [a]

denote the equivalence class of a.

v. [a]� [b] iff [a] 6= [b] and there are a′ ∈ [a], b′ ∈ [b] such that a′ D b′ (This relation

is defined on the set of equivalence classes of ,).

Since π ∈ Π is sd-efficient at R, due to Manea [9] there is a utility profile u

consistent with R and a function v : A→ R with the following properties:11

i. For each a ∈ A, v(a) is the length of the shortest chain of� starting at [a].

ii. For each i ∈ A such that πi(a) > 0, we have ui(a) = v(a).

iii. For each i ∈ A such that πi(a) = 0 and {b ∈ A|a Ri b, πi(b) > 0} = ∅, we have

ui(a) < minb∈A v(b).

iv. For each i ∈ A such that πi(a) = 0 and {b ∈ A|a Ri b, πi(b) > 0} 6= ∅, we have

ui(a) < max{b|aRib,πi(b)>0} v(b) + 1.

Now, we are ready to complete the proof. We will show that the utility profile u

and the function v satisfying the above four properties also satisfies the two conditions

in the statement of the theorem. Clearly, for each i ∈ N and a ∈ A, ui(a) ≤ v(a).

Therefore, we just need to show that ui(a) = v(a) iff (i, a) ∈ ExtSp(π,R).

Suppose that (i, a) ∈ ExtSp(π,R). Then, there are (i1, a1), . . . , (ik, ak) ∈ N ×
A such that (i, a) ∼(π,R) (i1, a1) ∼(π,R) · · · ∼(π,R) (ik, ak) ∼(π,R) (i, a). Now, since

(i, a) ∼(π,R) (i1, a1), we have v(a) ≥ ui(a) = v(a1). Similarly, for each t ∈ {2, . . . , k−1},
v(at) ≥ uit(at) = v(at+1), and v(ak) ≥ uik(ak) = v(a). Thus, ui(a) = v(a).

Suppose that ui(a) = v(a). If (i, a) ∈ Sp(π), then obviously (i, a) ∈ ExtSp(π,R).

So, suppose that (i, a) /∈ Sp(π). Then, {b ∈ A|a Ri b, πi(b) > 0} 6= ∅, because

otherwise ui(a) < minb∈A v(b) ≤ v(a). Let b ∈ arg maxb′∈{b∈A|aRib,πi(b)>0} v(b′). Note

10Actually, the definition in Manea [9] requires that a1Da2D. . .DakDa1 rather than a1 ./ a2 ./ . . . ./
ak ./ a1. Given that π is sd-efficient at R, the two definitions are equivalent (Katta and Sethuraman
[8]).

11A result by Katta and Sethuraman [8], which characterizes sd-efficient assignments in terms of a
property of D, plays an important role in the analysis of Manea [9].
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that ui(a) < v(b) + 1 and a D b. Then either [a] = [b] or [a] � [b]. If [a] � [b], then

v(a) ≥ v(b) + 1, contradicting to v(a) = ui(a) < v(b) + 1. So, suppose that [a] = [b].

Then, there are a1, . . . , ak, ak+1, . . . , aK such that b ./ a1 ./ a2 ./ . . . ./ ak ./ a ./ ak+1 ./

ak+2 ./ . . . ./ aK ./ b. Then, there is i1 ∈ N such that b Ii1 a1, πi1(a1) > 0; for each

t ∈ {1, . . . , k}, there is at such that at−1 Iit at, πit(at) > 0; and there is ik+1 such that

a Iik+1
ak. But then (i1, b) ∼(π,R) (i2, a1) ∼(π,R) (i3, a2) ∼(π,R) · · · ∼(π,R) (ik, ak−1) ∼(π,R)

(ik+1, ak) ∼(π,R) (i, a) ∼(π,R) (i1, b). Thus, (i, a) ∈ ExtSp(π,R).

The following lemmas will be helpful to present a characterization of sw-domination.

Lemma 2. Let R ∈ R. If an assignment π is sd-efficient at R, then there is a utility
profile u consistent with R such that the following is true: an assignment π′ maximizes
SW (u, ·) if and only if Sp(π′) ⊂ ExtSp(π,R).

Proof. A straightforward corollary to Theorem 1.

Lemma 3. Let R ∈ R. For each assignment π, there is an assignment π∗ such that
Sp(π∗) = ExtSp(π,R) and for each utility profile u consistent with R, SW (u, π∗) =

SW (u, π).

Proof. Take any (i0, a0) ∈ ExtSp(π,R)\Sp(π). There exists (i1, a1), (i2, a2), . . . , (ik, ak) ∈
N × A such that (i0, a0) ∼(π,R) (i1, a1) ∼(π,R) . . . ∼(π,R) (ik, ak) ∼(π,R) (i0, a0). Starting

from π, for some small enough ε > 0, by transferring ε probability of at from it−1 to it
for each t ∈ {1, . . . , k}, and transferring ε probability of a0 from ik to i0, we can obtain

an assignment π′ such that π′it(at) > 0 and π′it(at+1) > 0 for each t ∈ {1, . . . , k}, with

the convention that ak+1 = a0.

Note that Sp(π′) = Sp(π) ∪ {(i0, a0), (i1, a1), (i2, a2), . . . , (ik, ak)} and also Sp(π′) ⊂
ExtSp(π,R). Moreover, each agent receives the same utility at π′ and π. Hence,

SW (u, π′) = SW (u, π). Once we repeat this procedure for each (i, a) ∈ ExtSp(π,R) \
Sp(π), we obtain the desired assignment π∗.

Now, we are ready to prove Theorem 1.

If part: Suppose that π′ /∈ P sd(R) and π ∈ P sd(R). Since π′ /∈ P sd(R), there is no

utility profile u consistent with R at which π′ is ex-ante efficient. Since π ∈ P sd(R), by

Lemma 1 there is a utility profile u consistent with R at which π′ is ex-ante efficient,

implying that π sw-dominates π′.
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Suppose that π′ ∈ P sd(R) and ExtSp(π,R) ( ExtSp(π′, R). By Lemma 2, there is

an assignment π∗ such that Sp(π∗) = ExtSp(π′, R) and for each utility profile u con-

sistent with R, SW (u, π∗) = SW (u, π′). Now, consider any utility profile u consistent

with R at which π∗ is ex-ante efficient. Consider a decomposition of π into determin-

istic assignments, say consisting of µ1, . . . , µk. We will argue that there is a decompo-

sition of π∗ which includes µ1, . . . , µk. Since Sp(π) ⊂ Sp(π∗), there is ε > 0 such that

each entry of z = π∗ − επ is non-negative. Moreover, each row sum and each column

sum of z is 1− ε. Then, 1
1−εz ∈ Π and 1

1−εz can be written as a convex combination of

deterministic assignments, say µ′1, . . . , µ
′
t. Thus, π∗ = επ + z and therefore π∗ can be

decomposed into µ1, . . . , µk, µ
′
1, . . . , µ

′
t. Now, since π∗ maximizes SW (u, ·), the sum of

the utilities of the agents at each deterministic assignment in {µ1, . . . , µk, µ
′
1, . . . , µ

′
t}

is the same, and it is equal to SW (u, π∗). Thus, SW (u, π) = SW (u, π∗). Hence,

whenever π′ is ex-ante efficient, π is ex-ante efficient too. Now, since π ∈ P sd(R),

by Lemma 1 there is a utility profile u consistent with R and a function v : A → R
satisfying the properties listed in Lemma 1. Since, ExtSp(π,R) ( ExtSp(π′, R), there

is a pair (i, a) ∈ ExtSp(π′, R) \ ExtSp(π,R). Moreover, ui(a) < v(a) and therefore

SW (u, π) > SW (u, π′). Hence, π sw-dominates π′.

Only if part: Suppose that π sw-dominates π′ at R. Then, π ∈ P sd(R). If π′ /∈
P sd(R), then we are done. So suppose that π′ ∈ P sd(R). By Lemma 1 there is a

utility profile u consistent with R and a function v : A → R satisfying the properties

listed in Lemma 1 for the assignment π′. In particular, π′ is ex-ante efficient at u.

Since π sw-dominates π′, π is ex-ante efficient at u too. Moreover, by Lemma 3, there

is an assignment π∗ such that Sp(π∗) = ExtSp(π,R) and SW (u, π∗) = SW (u, π′).

Thus, π∗ is ex-ante efficient at u too. By Lemma 2, this is possible only if Sp(π∗) ⊂
ExtSp(π′, R). Since π′ ∈ P sd(R), we haveExtSp(π,R) ⊂ ExtSp(π′, R). Now, suppose

that ExtSp(π,R) = ExtSp(π′, R). Note that by Lemma 3, there is an assignment π∗

such that Sp(π∗) = ExtSp(π,R) and for every utility profile u, SW (u, π∗) = SW (u, π).

Also, there is an assignment π∗∗ such that Sp(π∗∗) = ExtSp(π′, R) and for every utility

profile u, SW (u, π∗∗) = SW (u, π′). But then, Sp(π∗) = Sp(π∗∗), and since π sw-

dominates π′, there is a utility profile at which π and π∗ are ex-ante efficient but π′

and π∗∗ are not, which is a contradiction. Hence, ExtSp(π,R) ( ExtSp(π′, R).
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6.2 Proof of Corollary 1

i. Directly follows from the proof of Theorem 1 in section 6.1.

ii. Directly follows from Theorem 1 and the previous item.

iii. Let R ∈ R be strict. First, note that each deterministic Pareto efficient as-

signment at R is sd-efficient at R. Now, for any assignment π that is not

deterministic, there is a Pareto efficient deterministic assignment µ such that

Sp(µ) ( Sp(π) (consider an assignment in one of the decompositions of π).

These facts, together with Theorem 1, imply Part 2. In particular, an assignment

that is not deterministic is sw-dominated by any deterministic assignment in its

decomposition.

iv. Only if part: Suppose that π is sw-efficient at R. Note that π is sd-efficient. If π

is deterministic, then the claim holds. Suppose π is not deterministic. Suppose

that there is i ∈ N and a, b ∈ A such that (i, a), (i, b) ∈ Sp(π), but a Pi b.

Next, consider a decomposition, say consisting of {µ, µ′, . . .}, of π where i is

assigned a at µ and b at µ′. Note that µ is sd-efficient. Moreover, ExtSp(µ,R) ⊂
ExtSp(π,R) because (i, b) /∈ ExtSp(µ,R). Hence, µ sw-dominates π.

If part: Suppose that π is sd-efficient and each agent is indifferent between

the objects he receives with positive probability at π. Take any π′ such that

ExtSp(π′, R) ( ExtSp(π,R). Since each agent is indifferent between the ob-

jects he receives with positive probability at π or π′, at each utility profile consis-

tent with R, the total utility is the same at π and π′, implying that π′ does not sw-

dominate π. Therefore, π is sw-efficient at R, since otherwise it is sw-dominated

by an assignment π′ with ExtSp(π′, R) ( ExtSp(π,R) due to Theorem 1.

6.3 Proof of Proposition 1

First, we introduce some notation. For each R ∈ R, i ∈ N , and a ∈ A, let U(Ri, a) and

L(Ri, a) denote the upper and the lower contour sets of Ri at a, that is, U(Ri, a) =

{b ∈ A : b Ri a} and L(Ri, a) = {b ∈ A : a Ri b}. Let Pi stand for the strict part

of the preference relation Ri. Let U(Pi, a) and L(Pi, a) denote the strict upper and

the strict lower contour sets of Ri at a, that is, U(Pi, a) = {b ∈ A : b Pi a} and
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L(Pi, a) = {b ∈ A : a Pi b}. Let V = N × A denote the vertex set of G(R) for each

R ∈ R.

Let π be an sd-efficient probabilistic assignment at R. For a contradiction, suppose

that π is an sd–envy-free probabilistic assignment that sw-dominates πps at R, i.e.

Sp(π) ⊂ Sp(πps). We will show that, if G(R) is connected, then π = πps, which will

yield a contradiction. In showing that, the following result, which is Theorem 1 of

Hashimoto et al. [5], will be useful: π = πps if and only if for each a ∈ A and i, j ∈ N
such that π(i, a) > 0, we have π(j, U(Rj, a)) ≥ π(i, U(Ri, a)). We will just show that

if G(R) is connected, then for each a ∈ A and i, j ∈ N such that π(i, a) > 0, we have

π(j, U(Rj, a)) ≥ π(i, U(Ri, a)).

Let a ∈ A. First, we show that for each (i, a), (j, b) ∈ V such that (i, a) → (j, b),

π(j, U(Pj, b)) ≥ π(i, U(Pi, a)). Since Sp(π) ⊂ Sp(πps), for each x ∈ U(Pi, a) and each

y ∈ L(Pj, b) such that π(i, x) > 0 and π(j, y) > 0, we have x Pj y. Let z be the most

preferred (according to Rj) alternative in L(Pj, b) with π(j, z) > 0. Since (i, a) →
(j, b), U(Ri, a) ∩ Sp(π) ⊂ U(Pj, z). Since π is envy free, π(j, U(Pj, z)) ≥ π(i, U(Pj, z)).

Hence we obtain π(j, U(Rj, b)) ≥ π(i, U(Ri, a)).

Now, since G(R) is a-connected, there is a path that connects (i, a) to (j, a) in

G(R). From the above finding, it follows that π(j, U(Rj, a)) ≥ π(i, U(Ri, a)).

6.4 Proof of Proposition 2

To prove this result, first we show that for each a ∈ A and (i, a), (j, a) ∈ V such

that (i, a) is not linked to (j, a) in G(R), in the PS assignment we can increase the

probability that i receives a without causing j to envy i.

Lemma 4. For each a ∈ A and (i, a), (j, a) ∈ V , if (i, a) 6→ (j, a), then there exists
εij > 0 such that πps(j, U(Rj, a)) > πps(i, U(Rj, a)) + εij.

Proof. For the proof we need the following two observations.

Observation 1: Since (i, a) 6→ (j, a), there exits x ∈ U(Ri, a) such that πps(i, x) > 0

and at Rj, j ranks x below some b ∈ L(Rj, a) such that πps(j, b) > 0.

Observation 2: For each y ∈ U(Pj, a) \ U(Ri, a) such that πps(j, y) > 0, we

have πps(i, y) = 0. Suppose not. Since y ∈ L(Pi, a) and πps(i, y) > 0, we have

πps(i, U(Ri, y)) > πps(i, U(Ri, a)). By definition of πps, we have πps(i, U(Ri, a)) =
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πps(j, U(Rj, a)). Then, πps(i, U(Ri, y)) > πps(j, U(Rj, y)), which contradicts the defi-

nition of πps.

It directly follows from Observation 1 and Observation 2 that πps(i, U(Ri, a)) ≥
πps(i, U(Rj, a)) + πpsi (x). Now, choose εij =

πps
i (x)

2
. Since by definition of πps we

have πps(j, U(Rj, a)) = πps(i, U(Ri, a)), we obtain πps(j, U(Rj, a)) > πps(i, U(Rj, a)) +

εij.

Next we introduce an auxiliary allocation mechanism, which is a generalization of

the PS mechanism to a setup where the available capacity of an object is not necessar-

ily 1 and can be an arbitrary amount. Let q ∈ RA
+ be a quota vector, which specifies,

for each object, the available amount of the object. For a given R ∈ RS, agents eat

starting from their most preferred objects at equal speeds as usual. The algorithm ter-

minates when each object is exhausted (note that an agent may end up eating more

than or less than 1 unit of objects). We denote the PS assignment at (R, q) by πps(R, q).

For each q ∈ RA
+, let Sp(q) = {a ∈ A : qa > 0}. As before, Sp(π(R, q)) denotes the set

of agent-object pairs that are assigned with positive probability at π(R, q).

Definition. Let R ∈ RS and q ∈ RA
+. We say that Sp(πps(R, ·)) is upper semi-

continuous at q ∈ RA
+ if there exists an ε > 0 such that for each q′ ∈ RA

+ with

||q′ − q|| < ε and Sp(q′) ⊂ Sp(q), we have Sp(πps(R, q′)) ⊂ Sp(πps(R, q)).

Lemma 5. Let ~1 stand for the unit quota vector in which each object has a quota
of 1 unit. For a given preference profile R ∈ RS, if R satisfies betweenness, then
Sp(πps(R, ·)) is upper semi-continuous at ~1 ∈ RA

+.

Proof. Consider πps(R) (or equivalently πps(R,~1)) and for each object a ∈ A, let

t(πps(R), a) be the set of objects that are exhausted before a. It follows from the defi-

nition of the PS mechanism that for each agent i and object a, we have πps(R)(i, a) > 0

if and only if U(Pi, a) ⊂ t(πps(R), a). Note that given the weak order of exhaustion

times of the objects while running PS at R for different quota vectors q, one can

identify the support of πps(R, q). Therefore, given two quota vectors q and q′, if the

order of exhaustion times of the objects are the same in πps(R, q) and πps(R, q′), then

Sp(πps(R, q)) = Sp(πps(R, q′)).

Now, let ε be such that for each a, b ∈ A that are exhausted at different times in

πps(R), 0 < ε < |ta − tb|/n. Note that for each q′ ∈ RA
+ with ||q′ − ~1|| < ε, none
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of the exhaustion orders will be reversed while obtaining πps(R, q′). That is, if an

object a is exhausted before another object b at πps(R), then a is exhausted before b

at πps(R, q′) too. However, two objects that are exhausted simultaneously at πps(R),

may be exhausted at different times at πps(R, q′). For the rest, let π stand for πps(R)

and π′ for πps(R, q′).

Now, by contradiction suppose that there exists a pair (i, a) ∈ N × A such that

π(i, a) = 0 but π′(i, a) > 0. It follows that U(Pi, a) 6⊂ t(π, a) but U(Pi, a) ⊂ t(π′, a). We

obtain a contradiction by showing that there exists an object c ∈ U(Pi, a) \ t(π′, a). To

see this, first recall that only the objects that are exhausted simultaneously at π may

be exhausted at different times at π′. It follows that for each x ∈ t(π′, a) \ t(π, a), x is

exhausted at the same time with a at π. From among these let b be the object that i

was eating when a is exhausted at π. Since a and b are exhausted simultaneously at

π, and π(i, b) > 0, it follows from betweenness that there exists an object c such that

π(i, c) > 0 and b Pi c Pi a. Now, since a and b are exhausted simultaneously at π and

b Pi c, c is exhausted after a at π. Therefore, by the choice of q′, c must be exhausted

after a at π′. It follows that although c ∈ U(Pi, a), c 6∈ t(π′, a).

Lemma 6. For a given preference profile R ∈ RS, let πt be the partial assignment that is
obtained by running PS until time t ∈ [0, 1] and for each x ∈ A, let qtx = 1−πt(N, x). If
Sp(πps(R, ·)) is upper semi-continuous at ~1, then Sp(πps(R, ·)) is upper semi-continuous
at qt.

Proof. Let Sp(πps(R, ·)) be upper semi-continuous at ~1. Then, there exists ε′ > 0 such

that for each q′ ∈ RA
+ with ||q′ − q|| < ε′ and Sp(q′) ⊂ Sp(q), we have Sp(πps(R, q′)) ⊂

Sp(πps(R, q)). Let ε be such that 0 < ε < ε′. Note that for each q′ with ||qt − q′|| < ε

and Sp(q′) ⊂ Sp(qt), we have ||(~1− (~1− qt + q′)|| < ε. Since Sp(πps(R)) is upper semi-

continuous at~1, we obtain Sp(πps(R,~1−qt+q′)) ⊂ Sp(πps(R)). Note that Sp(πps(R,~1−
qt + q′)) = Sp(πps(R, q′))∪ Sp(πt) and Sp(πps(R)) = Sp(πps(R, qt))∪ Sp(πt). Next, we

argue that Sp(πps(R, q′)) ⊂ Sp(πps(R, qt)). For this conclusion, it is sufficient to show

that for each (i, a) ∈ Sp(πps(R, q′)) ∩ Sp(πt), we have (i, a) ∈ Sp(πps(R, qt)). For each

(i, a) ∈ Sp(πt), if (i, a) ∈ Sp(πps(R, q′)), then q′a > 0. Since Sp(q′) ⊂ Sp(qt), we have

qta > 0. Thus we have (i, a) ∈ Sp(πt) and qta > 0, note that this is possible only if a is

the object that is eaten by agent i at time t. It follows that i first eats a at πps(R, qt),

therefore (i, a) ∈ Sp(πps(R, qt)).
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Now, we are ready to complete the proof Proposition 2. By contradiction suppose

there exists a ∈ A such that G(R) is not a-connected. First we observe that a cannot

be an alternative that is exhausted last in πps(R). By contradiction, suppose there

exists k ∈ N such that πps(k, U(Rk, a)) = 1. Now, we argue that G(R) must be a-

connected. To see this note that (1) for each i ∈ N with πps(i, a) > 0, a is the last

object that is assigned i in πps(R). (2) for each j ∈ N with πps(j, a) = 0, let b be the

last alternative that j is assigned in πps(R). Since both a and b are exhausted at last,

we have b Rj a. It directly follows from (1) and (2) that for each (i, a), (j, a) ∈ V

such that π(i, a) > 0, (i, a) → (j, a). In what follows we will construct an assignment

π 6= πps that is sd–envy-free, sd–efficient and Sp(π) ⊂ Sp(πps).

First let us define a partial assignment π′ : N × A → [0, 1] such that for each

i ∈ N and a ∈ A, π′(i, A) ≤ 1 and π′(N, a) ≤ 1. Note that we can still consider

sd–envy-freeness of π′, and if π′ is sd–envy-free then for each i, j ∈ N we must have

π′(i, A) = π′(j, A). Now let π′ be the partial assignment, which is obtained by running

the PS algorithm until a is exhausted. That is, if a is exhausted at time t ≤ 1, then

for each i ∈ N we have (1) for each b ∈ A such that πps(i, U(Ri, b)) ≤ t, π′(i, b) =

πps(i, b), (2) there is at most one object c ∈ A such that π′(i, c) > 0 and πps(i, c) 6=
π′(i, c), (3) π′(i, A) = t. Note that π′(N, a) = 1 and for each b ∈ A that is exhausted

after a, π′(N, b) < 1. Since π′ is obtained through running the PS algorithm, all the

arguments for the envy-freeness of πps holds for π′. Thus, we conclude that π′ is sd–

envy-free. Next, by using the fact that G(R) isn’t a-connected, we will construct an

sd-envy-free partial assignment π′′ via making some small perturbations to π′ on the

assignment probabilities of the objects that are assigned with positive probability at

π′ just before time t.

Since G(R) isn’t a-connected, there exist i∗, j∗ ∈ N such that there is no path that

connects (i∗, a) to (j∗, a). Let I be the set of all i ∈ N such that there is a path that

connects (i∗, a) to (i, a) and let J be the set of all j ∈ N such that there is a path that

connects (j, a) to (j∗, a). Note that since (i∗, a)→ (i∗, a) and (j∗, a)→ (j∗, a), we have

i∗ ∈ I and j∗ ∈ J . For each i ∈ I and j ∈ J , since there is no path that connects (i∗, a)

to (j∗, a), there cannot be any path that connects (i, a) to (j, a), so (i, a) 6→ (j, a). It

follows from Lemma 4 that for each i, j ∈ N such that π(i, a) > 0 and (i, a) 6→ (j, a),

there exists εij > 0 such that πps(j, U(Rj, a)) > πps(i, U(Rj, a)) + εij. Now, for any

ε ≤ min{i,j∈N :π(i,a)>0 and (i,a)6→(j,a)}εij, let 2|I|εI = 2|J |εJ = ε, so we have εI + εJ ≤ ε.
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Next, we define π′′ as follows:

i. For each i ∈ I, π′′(i, a) = π′(i, a) + εI and for any b 6= a, π′′(i, b) = π′(i, b).

ii. For each j ∈ J , π′′(j, a) = π′(j, a) − εJ , let b be the next consumable object for

j after a, then π′′(j, b) = εI + εJ and finally for any c except a and b, π′′(j, c) =

π′(j, c).

iii. For each k /∈ I ∪ J with π(k, a) > 0, let b be the next consumable object for k

after a. Now, let π′′(k, b) = εI and for each c 6= b, π′′(k, c) = π′(k, c).

iv. Finally for each k ∈ N with π(k, a) = 0, let b be the lowest ranked object that is

consumed with positive probability in π′.

a. If b is exhausted after a, then let π′′(k, b) = π′(k, b) + εI and for each c 6= b,

π′′(k, c) = π′(k, c).

b. If a and b are exhausted at the same time, then let c be the next object

that is consumed by k at πps. Let π′′(k, c) = π′(k, c) + εI and for each d 6= c,

π′′(k, d) = π′(k, d).

Now, we argue that π′′ is envy-free. First, it is easy to see that by our choice of ε

and Lemma 4, no agent envies another because of a. Second, no agent envies another

because of a previously exhausted object, since we kept the probabilities of all such

objects as in πPS(R), which is envy-free. Finally no agent envies another because of

his lowest-ranked object that he is assigned with positive probability, since for each

agent the total probability that he is assigned to an object that is at least as good

as that object is equal to t + εI . To see this note that by construction of π′′ for each

i ∈ N , π′′(i, A) = π′(i, A) + εI = t + εI . Thus, we conclude that π′′ is sd–envy-free.

Next, note that while π′′(N, a) = 1, for some b 6= a we might have π′′(N, b) > 1. Now,

we argue that we can choose ε such that for each b ∈ A, π′′(N, b) ≤ 1. To see this,

first observe that by construction of π′′ for each b that is exhausted after a we have

π′′(N, b) ≤ π′(N, b) + n · ε. So, we can choose ε so small that π′′(N, b) ≤ 1. Hence, we

obtain an sd–envy-free partial assignment π′′ such that the assignment of a is different

from that of πps(R).

Next, we extend the partial assignment π′′ to an assignment π∗. Let q, q′′ ∈ RA
+ be

the quota vectors of the objects such that for each x ∈ A, qx = 1−π′(N, x) and q′′x = 1−
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π′′(N, x) respectively. Define the assignment π∗ = π′′+πps(R, q′′). First, we argue that

Sp(π∗) ⊂ Sp(πps(R)). To see this first note that, by the construction of π′′, we have

Sp(π′′) ⊂ Sp(πps(R)). Since R satisfies betweenness, it follows from Lemma 5 and 6

that Sp(πps(R, ·)) is upper semi-continuous at q. Therefore we can choose ε so small

that Sp(πps(R, q′′)) ⊂ Sp(πps(R, q)). Moreover, since at least π∗(i∗, a) 6= πps(i∗, a), π∗

is different from πps(R). Since we can easily express π∗ as an eating mechanism, it is

sd–efficient. Finally, we argue that π∗ is sd–envy-free. To see this, note that for each

i, j ∈ N and x ∈ A, we have π∗(i, U(Ri, x)) = π′′(i, U(Ri, x)) + πps(R, q)(i, U(Ri, x))

and π∗(j, U(Ri, x)) = π′′(j, U(Ri, x)) + πps(R, q)(j, U(Ri, x)). Since π′′ and πps(R, q)

are sd–envy-free, π∗(i, U(Ri, x)) ≥ π∗(j, U(Ri, x)). It follows that π∗ is sd–envy-free.
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